EECS 373

Design of Microprocessor-Based Systems

Branden Ghena
University of Michigan

Lecture 4: Memory-Mapped |I/0, Bus Architectures
September 11, 2014

Slides developed in part by
Mark Brehob & Prabal Dutta

Today...

Memory-Mapped 1/0
Example Bus with Memory-Mapped |/0
Bus Architectures

AMBA APB

Memory-mapped I/0

e Microcontrollers have many interesting
peripherals

- But how do you interact with them?

e Need to:
- Send commands
- Configure device
- Receive data

e But we don’t want new processor instructions for
everything

- Actually, it would be great if the processor know
anything weird was going on at all

Memory-mapped I/0

« Instead of real memory, some addresses map to
|/0 devices instead

Example:
e Address 0x80000004 is a General Purpose I/0 (GPIO) Pin
- Writing a 1 to that address would turn it on
- Writing a 0 to that address would turn it off
- Reading at that address would return the value (1 or 0)

Smartfusion
Memory Map

Memory Map of
Cortex-M

Memory Map of
FPGA Fabric Master,
Ethemet MAC,
Peripheral DMA

System Registers

External Memory Type 1

External Memory Type 1

Extarnal Memory Type 0

External Memory Type 0

eNVM Controller

eNVM Controlier

Peripheral Brt-Band Allas
Region of Cortex-M32 i

SRAM Bit-Band Allas
Reglon of Cortex-M2

Cortex-M3
System Reglon
Cortex-M3
Code Reglon

NVM Aux Block {spare pages) | eNVM Aux Block (spare pages)
eNVM Aux Block (array) eNVM Aux Block (array)
eNVM Spare Pages eNVM Spare Pages

eNVM Array eNVM Array
Peripherals (BB view)
FPGA Fabric FPGA Fabric

FPGA Fabric eSRAM Backdoor

FPGA Fabric eSRAM Backdoor

APE Extension Regster

Analog Computa Engine

Analog Compute Engine

AP Controller IAP Controller
eFROM EFROM
RTC RTC
MSS GPIO MS5 GPIO
i2C_1 12C_1
SPI Y SPI_1
UART 1 UART 1

Fabek intarface interrupt Controfer

Fabek intarfaco Interrupt Controller

Watchdog Watchdog
Timer Timer
Peripheral DMA Peripheral DMA
Ethernet MAC Ethernet MAC
—2C o R2C o
SP1_D 580
UART @ UART 0
ESRAM 0/ eSRAM 1 (88 view)
aSRAM _1 eSRAM 1
aSRAM 0 SSRAM D

eNVM (Cortex-M3)
Virtual View

OXEOD43000 — OXFFFFIFFF
OXEOD42000 — OXEDO42FEE
0X78000000 — OXECO41FFF
0X74000000 - OXTTFFEFFF
0X70000000 — 0x7IFFFFF
0x601D0000 — OXEEFFFFFF
0X50180000 — 0X601CFEFF
OX50100100 — OX60 1 7FFFF
050100000 — OXG01000FF
CX60088200 — OXGOOFFFFF
OX50088000 — OXG00S81FF
CX60D84000 — OXG0OSTFEF
0X50080000 — OXGOOB3FFF
0X60000000 — DXG0OTFFFF
0X44000000 - OXSFFEFEFF
0X42000000 — OXAIFFEFFF
0X30100000 - CxAVFFEFFF
0X40050000 — OXS00FEFFF
OXA0DS0000 — OXS00SFFFF
0X40030004 — 0X400FFFF
OXADD3000C - 0X20030003
0X40020000 — OXS0OZFFFF
£x40017000 — GX4001FFFF
OX40016000 — OXS0016FFF
040015000 — OX40015FFF
040014000 — Ox$0014FFF
040013000 — OX40013FFF
0X30012000 - 0X40012FFF
0X40011000 — 0X800 1 1FFF
0X40010000 - 0x200 10FFF
040008000 — 0x4000FFFF
0X40007000 - Ox&0007FFF
0X40006000 — 0XS0006FEF
0X40005000 — OXS000SFEF
0X40004000 — OXS0004FFF
0X40003000 — OX$0003EFF
0X40002000 — OX$SDOC2FFF
£X40001000 — 0X40001 FFF
OX40000000 — OXSD00DFEF
0X24000000 — DX3FFFFFEF
0X22000000 — OX2IFFFFFF
0X20010000 — Ox2VFFFFFF
OX20008000 — GX20005FFF
020000000 — CX20007FFF
0X00D88200 - OX |FFEFFFF
OX000881FF

wistble only

Figure 2-4 »

System Memory Map with 64 Kbytes of SRAM

Memory-mapped I/0

« Instead of real memory, some addresses map to
|/0 devices instead

e But how do you make this happen?
- MAGIC isn’t a bad guess, but not very helpful

Let’s start by looking at how a memory bus works

Today...

Example Bus with Memory-Mapped 1/0

Bus terminology

e Any given transaction have an “initiator” and
“target”

e Any device capable of being an initiator is said to
be a “bus master”

- In many cases there is only one bus master (single
master vs. multi-master).

e A device that can only be a target is said to be a
slave device.

Basic example

Let’s demonstrate a hypothetical example bus

e Characteristics
- Asynchronous (no clock)
- One Initiator and One Target

e Signals
- Addr[7:0], Data[7:0], CMD, REQ#, ACK#
e CMD=0 is read, CMD=1 is write.
« REQ# low means initiator is requesting something.
o ACK# low means target has done its job.

Read transaction
Initiator wants to read location 0x24

Addr[7:0] 22 0x24 X 77

CMD

Data[7:0] ?? 0x55)

REQ#

ACK# \ -
ABCD E H |

A read transaction

e Say initiator wants to read location 0x24
A. Initiator sets Addr=0x24, CMD=0

Initiator then sets REQ# to low

. Target sees read request

. Target drives data onto data bus

Target then sets ACK# to low

Initiator grabs the data from the data bus

. Initiator sets REQ# to high, stops driving Addr and
CMD

. Target stops driving data, sets ACK# to high
terminating the transaction

|. Bus is seen to be idle

OMMmMUO N

I

A write transaction

e Say initiator wants to write OxF4 location 0x31
A. Initiator sets Addr=0x24, CMD=1, Data=0xF4

Initiator then sets REQ# to low

. Target sees write request

. Target reads data from data bus

(only needs to store in register, not write all the way to
memory)

Target then sets ACK# to low.

Initiator sets REQ# to high, stops driving other lines
. Target sets ACK# to high, terminating the transaction
. Bus is seen to be idle.

O N w

L O Mm

Returning to memory-mapped I/0

Now that we have an example bus, how would
memory-mapped |/0 work on it?

Example peripherals
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On -> 1
Off -> 0

The push-button
(if Addr=0x04 write 0 or 1 depending on

button)
Addr[7]
Addr[6]
Addr[5] ACK#
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ#
CMD Data[7]
Data[6]
Data[5]
Data[4]
Data[3]
Data[2]
Data[1]
Data[0]

Button (O or 1)

The push-button

(if Addr=0x04 write 0 or 1 depending on

button)

Addr[7]
Addr[6]
Addr[5]
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
REQ#
CMD

Button (0 or 1)

vevIvTYY

Data|
Datal

Data
Data
Data

Datal

Data]
Data[

i

SE N S g

Delay —— ACK#

What about
CMD?

The LED
(1 bit reg written by LSB of address
0x05)

Addr[7]
pors
r
Addr[4] ACK#
Addr[3]
Addr[2]

Addr[1]
Addr[0]

REO#
e LED

DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

The LED
(1 bit reg written by LSB of address
0x05)

Addr[7]
Addr[6]
Addr[5]
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]

0 Delay | ACK#

REQ#
CMD

" LED

DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

Let’s write a simple assembly program
Light on if button is pressed.

Peripheral Details
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On -> 1
Off -> 0

Today...

Memory-Mapped 1/0

Example Bus with Memory-Mapped |/0
Bus Architectures

AMBA APB

19

Driving shared wires

o It is commonly the case that some shared wires
might have more than one potential device that
needs to drive them.

- For example there might be a shared data bus that is
used by the targets and the initiator. We saw this in
the simple bus.

- In that case, we need a way to allow one device to
control the wires while the others “stay out of the
Way”

e Most common solutions are:

- using tri-state drivers (so only one device is
driving the bus at a time)

- using open-collector connections (so if any
device drives a 0 there is a 0 on the bus
otherwise thereisa 1)

Or just say no to shared wires.

e Another option is to not share wires that could
be driven by more than one device...
- This can be really expensive.

e Each target device would need its own
data bus.

e That’s a LOT of wires!

- Not doable when connecting chips on a PCB as you are
paying for each pin.
- Quite doable (though not pretty) inside of a chip.

Wire count

e Say you have a single-master bus with 5 other
devices connected and a 32-bit data bus.

- If we share the data bus using tri-state connections,
each device has “only” 32-pins.

- |f each device that could drive data has it’s own bus...

e Each slave would need pins for data
e The master would need pins for
data

o Again, recall pins==55555S.

What happens when this “instruction” executes?

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
uint32_t *reg = (uint32_t *)(REG_FO00);
*reg += 3;

printf(“Ox%x\n”, *reg); // Prints out new value

}

“*reg += 3” is turned into a ld, add, str sequence

e Load instruction

A bus read operation commences

The CPU drives the address “reg” onto the address bus

The CPU indicated a read operation is in process (e.g. R/W#)
Some “handshaking” occurs

The target drives the contents of “reg” onto the data lines
The contents of “reg” is loaded into a CPU register (e.g. r0)

e Add instruction

An immediate add (e.g. add r0O, #3) adds three to this value

e Store instruction

A bus write operation commences

The CPU drives the address “reg” onto the address bus

The CPU indicated a write operation is in process (e.g. R/W#)
Some “handshaking” occurs

The CPU drives the contents of “r0” onto the data lines

The target stores the data value into address “reg”

Details of the bus “handshaking” depend
on the particular memory/peripherals involved

e SoC memory/peripherals
- AMBA AHB/APB

« NAND Flash
- Open NAND Flash Interface (ONFI)

 DDR SDRAM
- JEDEC JESD79, JESD79-2F, etc.

Why use a standardized bus?

e Downsides
- Have to follow the specification
- Probably has actions that are unnecessary

o Upside
- Generic systems
- Allows modules to be reused on different systems

Today...

Memory-Mapped 1/0

Example Bus with Memory-Mapped |/0
Bus Architectures

AMBA APB

27

Modern embedded systems have multiple busses

o
A
S
O X
PO & & R
S5 & ok K
i e QOFL $ VEEESD L S
- 11 | 13344¢ A Atmel SAM3U
System Controll JTAG & Senal Wire HS UTMI [
TST ystem Controller| | | L I, M. J —
PCKO> vivvh e Voitage
-PCK2 PLLA In-Circuit Emulator USB Reguiator
SysTick Counter] N Device
UPLL v HS
PMC Cortex-M3 Processor | NAND Flash)
XIN=— Fmax 96 MHz c anEt«gger
XOUT €—]_3-20 — =
AC Osc, NANDRDY
12/8/4 DO-D15
NAND Flash| :?’NBSO
WDT SRAM
(4KBytes) A2-A20
e T e
Expanded b NGsf
p FLASH sramo || smami ROM Peripheral || Peripheral ECkara NWRO/NWE
3 73 f ocus R a2k|| 8 2x128 KBytes || 32 KBytes| | 16 KBytes| | 16 kByta DMA Bridge DMA NWR1/NBS
GPBRE 1x128 KBytes || 16 KBytes|| 16 KBytes Controller Static > NWAIT
XIN32 —>» (32 C 1x64 KBytes || 8 KBvtas sl Ao
e Controfler NaNoaLe
SHON «—]| suPC A22/
FWUP—> HIC PDC poc| [PDC PDC PDC <> NaNocLe
VDDBU—["POH] USARTO TCO .
8-channal
NASTE—3> e | lael] luain USART PwM || TC1 SPI e HE NCs2
ERASE—>»] RSTC 10-bit ADC USART2 TC2
NRST < > USART3 NNﬁ:gx%
[PIOA | 5
[Pioc] ;
© NS %0 o o A
G S RIS B ot FF o
T #5787 ¥ G RREIT OIS QL LR S
PLGVPR & SRS NS & T
S I SE CORERK & X &
& g @ (‘\0 < §$ QN &
F & ¥ &Q
& F

Historical
373 focus

Actel SmartFusion system/bus architecture

SmaRTFUSION®

Advanced Microcontroller Bus Architecture (AMBA)
- Advanced High-performance Bus (AHB)
- Advanced Peripheral Bus (APB)

High-performance High-bandwidth

ARM processor on-chip RAM
B UART Timer
High-bandwidth AHB |:|‘1 APB
Memory Interface D
G
E Keypad PIO
DMA bus
master AHB to APB Bridge
AHB APB
e High performance Low power
« Pipelined operation e Latched address/control
e Burst transfers e Simple interface
e Multiple bus masters e Suitable of many

Split transactions peripherals

APB is a fairly simple bus designed to be easy to
work with.

e Low-cost

Low-power

Low-complexity

Low-bandwidth

Non-pipelined

|deal for peripherals

Notation

Clock|; | él

HIGH to LOW | 1\

Transient:

HIGHLOW to HIGH!

Bus stableé

i
_
i

Bus to high impedance :

Bus change

High impedance to stable busi

APB bus signals

e PCLK
- Clock

« PADDR

- Address on bus

e PWRITE
- 1=Write, 0=Read
« PWDATA

- Data written to the
|/0 device.
Supplied by the
bus
master/processor.

T0 T1 T2 T3 T4
PCLKD | | [L
PADDR) XX Adar 1 '
RITE __U . . '
PSEL ! A7 ' T :
PENABLE | ! /7_‘,“_3
P T s
PREADY | | 7 A W

APB bus signals

e PSEL

- Asserted if the current
bus transactior] is
targeted to this device

« PENABLE

- High during entire
transaction other than
the first cycle.

« PREADY

- Driven by target.
Similar to our #ACK.
Indicates if the target
is ready to do
transaction.

Each target has it’s
own PREADY

T0 T1 T2 T4

PCLK [| | | |
PADDR | i)()(Addr 1 i
PVVR'TE I—I—U i i 1
Crse) | A

¥ o)
PWDATA | XX Data 1 i g
PREAD ' [/ ' B i

A write transfer with no wait states

Setup phase begins
with this rising edge

!

T0 T T2 T3 T4

PADDR | 0 T Addr 1 |

PWRITE 7

PENABLE |

PWDATA j@ Diata 1)
PREADY | 7 T

| Setup ;Access
Phase Phase

A write transfer with wait states

Setup phase begins
with this rising edge

|

T1

TO

PCLK]

L

T2

T3

T4

T5

PADDR

0

Addr 1 |

PWRITE i

T

PSEL |

0

PENABLE |

PWDATA |

[f;iata 1

0

PREADY

| Setup

Phase

A

Wait
State

Wait | Access

State

Phase

finls

A read transfer with no wait states

Setup phase begins
with this rising edge

!

T0 T T2 T3 T4
PCLK

PADDR 0 — Adar1 |

PWRITE \\

PSEL 7 T i
PENABLE | el
PRDATA B Y Daa 1)

" Setup Access
Phase Phase

A read transfer with wait states

Setup phase begins
with this rising edge

!

TO T1 T2 T3 T4 T5
PCLK!

PADDR! 5{} 5 T Addr1 |

HNRnEé é\\

PSEL% é}/

PENABLE | [

PRDATA I ! ! ! i Data 1.

PREADY E %\\ % %j/

Setup Wait Wait Access
Phase State State Phase

APB state machine

e IDLE
- Default APB state B

. SETUP T

PSELx =0

~

No transfer

- When transfer required PENfrEEzo
- PSELXx is asserted Transfer
- Only one cycle
e ACCESS Rl /psEEi’P1
transfer PENABLE =0 \
- PENABLE is asserted \ PREADY = 1
and transfer
- Addr, write, select, and I \
write data remain stable oo S\ PREADY =0
ACCE
- Stay if PREADY =L BeRe=
- Goto IDLE if PREADY = H e -

and no more data

- Goto SETUP is PREADY = H
and more data pending

Example setup

e For the next couple of slides, we will
assume we have one bus master “CPU” and
two slave devices (D1 and D2)

- D1 is mapped to 0x00001000-0x0000100F
- D2 is mapped to 0x00001010-0x0000101F

Say the CPU does a store to location 0x00001004

with no stalls
TO T T2 T3 T:4

i ;
PCLK! | | | |
PADDR | | | |

PWRITE

D 1 PSEL%
PENABLE%

PWDATA%

PREADY%

10 T1 12 T3 T4

i s
PCLK! | | | |
PADDR! | | | |

PWRITE%

D 2 PSEL;
PENABLE%

PWDATA%

PREADY%

Writes

Let’s do some hardware examples!

What if we want to have the LSB of this register control

an LED?

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

D[31:0]
EN

C

32-bit Reg

Q[31:0]

PREADY
LED
T0 T1 T2 T3 T4
PeLk || 1| ,
PADDR i)o(' Addr1 ! !
PWRITE | U ' -
PSEL ! U | R !
PENABLE | ' [7—““_:
PWDATA | X Jata 1 :x:x i
PREADY% j[l '

Reg A should be written at address 0x00001000
Reg B should be written at address 0x00001004

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

32-bit Reg A
D[31:0]

Q[31:0]
EN

C

32-bit Reg B
D[31:0]

Q[31:0]
EN

C

PREADY
TO T1 T2 T3 T4
} } } } !
okl | [LI LI L4
PADDR i I Addr1 !
XX T
F’WRITE U : i E
PSEL ! [/ i R !
PENABLE | i ; |
I T 1
PWDATA | x_'x Data 1 X

PREADY | | 7 —

Reads...

TO T1 T2 T3 T4

PADDR: 0 — Addr1_
IWNHWE% %\\ | |

A\

PENABLE | é{/ é U

(::EEDAEEE} éx —(Data 1)X

PREADY | I A\

PSEL% %//

The key thing here is that each slave device has its own read data (PRDATA) bus!

Recall that “R” is from the initiator’s viewpoint—the device drives data when read.

Let’s say we want a device that provides data from
a switch on a read to any address it is assighed.

(so returns a O or 1)

PWRITE

PENABLE

PSEL

PADDR([7:0]

PCLK

PREADY
PRDATA[32:0]
Mr.
Switch
T0 T1 T2 T3 T4
PCLKg_l_: | | | :—l |
PADDR X Adar1_
PWRITE T
PSEL. ¥ A |
PENABLE
PRDATA 3 BEINE|
PREADY 7 T

Device provides data from switch A if address

0x00001000 is read from. B if address 0x00001004

is read from

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

Mr.
Switch

Mrs.
Switch

PREADY

PRDATA[32:0]

All reads read from register, all writes write...

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg
D[31:0]

Q[31:0]
EN

C

PREADY

PRDATA[32:0]

TO T1 T2 T3 T4

} } } } 1

Pekt || [S R

PADDR i H Addr 1 1 I

: X e L :

PWRITE 1 ; i ' E

PSEL | i ' R !

PENABLE | | ¥/ Y |
1

PWDATA | i Jata 1 TN i

PREADY | | 7 A

Things left out...

e There is another signal, PSLVERR (APB Slave
Error) which we can drive high if things go bad.
- We’ll just tie that to 0.

e PRESETnN

- Active low system reset signal
- (needed for stateful peripherals)

« Note that we are assuming that our device need
not stall.
- We could stall if needed.

e | can’t find a limit on how long, but | suspect at
some point the processor would generate an error.

Verilog!

/*** APB3 BUS INTERFACE **%*/

input PCLK, // clock

input PRESERN, // system reset

input PSEL, // peripheral select

input PENABLE, // distinguishes access phase

output wire PREADY, // peripheral ready signal

output wire PSLVERR, // error signal

input PWRITE, // distinguishes read and write cycles

input [31:0] PADDR, // I/0 address

input wire [31:0] PWDATA, // data from processor to I/O device (32 bits)
output reg [31:0] PRDATA, // data to processor from I/O device (32-bits)
/*** 1/0 PORTS DECLARATION **%*/

output reg LEDOUT, // port to LED

input SW // port to switch

) ;

assign PSLVERR = 0;
assign PREADY = 1;

Questions?

Comments?

Discussion?

