
Tock: From Research to Securing 10 Million
Computers

Leon Schuermann
lschuermann@princeton.edu

Princeton University

Brad Campbell
bradjc@virginia.edu

University of Virginia

Branden Ghena
branden@northwestern.edu

Northwestern University

Philip Levis
pal@cs.stanford.edu
Stanford University

Amit Levy
aalevy@princeton.edu
Princeton University

Pat Pannuto
ppannuto@ucsd.edu

University of California, San Diego

Abstract
Tock began 10 years ago as a research operating system
developed by academics to help other academics build urban
sensing applications. By leveraging a new language (Rust)
and new hardware protection mechanisms, Tock enabled
“Multiprogramming a 64 kB Computer Safely and Effi4
ciently”. Today, it is an open4source project with a vibrant
community of users and contributors. It is deployed on root4
of4trust hardware in data4center servers and on millions of
laptops; it is used to develop automotive and space products,
wearable electronics, and hardware security tokens—all
while remaining a platform for operating systems research.
This paper focuses on the impact of Tock’s technical design
on its adoption, the challenges and unexpected benefits
of using a type4safe language (Rust)—particularly in secu4
rity4sensitive settings—and the experience of supporting a
production open4source operating system from academia.

CCS Concepts: • Software and its engineering → Oper#
ating systems.
ACM Reference Format:
Leon Schuermann, Brad Campbell, Branden Ghena, Philip Levis, Amit
Levy, and Pat Pannuto. 2025 Tock: From Research to Securing 10
Million Computers. In ACM SIGOPS 31st Symposium on Operating
Systems Principles (SOSP '25), October 13–16, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3731569.3764828

1 Introduction
This paper is about the design, evolution, and deployment of
Tock, a secure embedded operating system (OS) written in
Rust. Originally a research OS intended to explore how the
Rust language might improve embedded system security,

This work is licensed under Creative Commons Attribution Interna4
tional 4.0 License.
SOSP '25, October 13–16, 2025, Seoul, Republic of Korea.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 97948440074187040/2025/10.
https://doi.org/10.1145/3731569.3764828

today, Tock runs on root4of4trust hardware in data4center
servers, securely boots laptops, and powers automotive as
well as space systems. At the same time, Tock has remained
a platform for OS research.

This paper describes our experiences evolving Tock, from
its early days as a research system into an open4source
project deployed on tens of millions of computers (Figure 1).
We hope these experiences can provide valuable insights
to systems research. First, Tock’s distinctive constraints,
from being a security4focused OS to enabling multi4pro4
gramming in highly resource4constrained systems, force it
to make a set of interesting and unconventional design
decisions and tradeoffs. Second, Tock is one of the first OS
kernels written entirely in Rust, before Rust was embraced
by OS researchers [27] and practitioners [11, 12, 33]. We
encountered unexpected challenges and opportunities from
using Rust, which are relevant to the broader systems com4
munity. Third, Tock reached practical adoption and wide4
spread deployment, often in security4critical applications,
shepherded mostly by academic contributors. We reflect on
how it achieved this, and the relationship between academic
research and an open4source project.

We revisit Tock’s original design in Section 2. Many of
the original goals and constraints that informed the design
of Tock remain relevant today. For example, its use of Rust
to provide isolation and least privilege with virtually no
CPU or state overhead remains an integral benefit for Tock.
Similarly, eschewing the single protection4domain design
of most embedded OSes in favor of a hardware4mediated
separation of kernel and applications has proven important
for security, but also more generally for supporting legacy
applications in C, as well as for managing product develop4
ment that spans multiple teams. Much of the early revisions
of the OS addressed the challenges of using Rust to enable
this design, and many of our early decisions remain today.

Section 3 explores how Tock had to evolve since its first
release. As both development of Tock progressed and Rust
matured, we discovered that some of the design of Tock’s
internals were incompatible with Rust’s soundness require4
ments; resolving this required substantially redesigning the
system call ABI, main kernel loop, and Tock’s kernel exten4

mailto:lschuermann@princeton.edu
mailto:bradjc@virginia.edu
mailto:branden@northwestern.edu
mailto:pal@cs.stanford.edu
mailto:aalevy@princeton.edu
mailto:ppannuto@ucsd.edu
https://doi.org/10.1145/3731569.3764828
https://doi.org/10.1145/3731569.3764828
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3731569.3764828

Initial Commit

Interior Mutability

Grants

Signpost Deployed [2]

SOSP paper [24]

1.0 Release

RISC4V Support

OpenSK Released

Automated Clock Mgmt [10]

2.0 Release

Formal Threat Model [4]

Tock on Chromebooks

x86 Support

Tock4based Pluton

Verified Isolation [29]

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 1: Timeline of Tock development , deployments , and research . Tock was originally developed to provide a secure
multi4programming environment for urban4scale sensor network platforms. Since then, it has been adopted by users
in other domains, primarily for hardware root4of4trust devices, which in turn motivated additional developments; these
include a revised system call interface, a formal threat model, stronger isolation guarantees, and support for additional
CPU architectures and hardware protection mechanisms.

sion abstraction (“capsules”). An expansion in Tock’s appli4
cation domain focus drove these discoveries and changes.
The OS was originally designed to support low4power ur4
ban sensing systems and wearable electronics. Very quickly
after its first release, however, Tock attracted interest from
companies and non4profit organizations that developed
hardware root4of4trust chips. These devices, often resource4
constrained microcontrollers, are the foundation for all
computing system security. They store keys, verify boot
images, and are the first step in verifying that a system
has not been compromised. For these uses, the benefits of a
kernel written in Rust rather than C were obvious. Further4
more, new developers strongly pushed for better support of
Rust userspace applications.

In Section 4, we reflect on the various ways that Tock
is able to use Rust’s strong and expressive types to enable
guarantees beyond memory isolation. Over the last decade,
Tock has evolved type4based constructs for enforcing call4
ing conventions that entirely prevent common driver bugs,
for enabling memory sharing across multiple layers of
complex software, and for generalizing hardware virtualiza4
tion layers across platforms—all without dynamic memory
allocation. These improvements can guide future OS kernel
developers who are considering using Rust.

Over time, the amount of unsafe code in the core Tock
kernel has remained steady, despite significant additional
features (see Figure 5). While Tock always outlawed the use
of unsafe language features in drivers, Section 4 further
discusses how Tock refined its interfaces and design to con4
tain and minimize unsafe usage. Today, unsafe is only used
in a few limited places that must interact with hardware
or software that is not subject to Rust types (e.g., hardware
MMIO registers and the process boundary) and to create
capabilities that limit access to sensitive kernel interfaces.

Despite the benefits of Rust, our experience has also
highlighted the challenges of retaining language safety

invariants when programming against both hardware and
applications that are not beholden to language constraints
(Section 5). The Tock kernel, like most embedded systems,
is entirely event4driven with a single stack. Rust’s memory
model, however, is inexorably tied to threaded, synchro4
nous execution: lifetimes correspond to stack frames, and
borrows last over the duration of a function call. This
makes upholding Rust’s aliasing and mutability invariants
when implementing an asynchronous system call boundary
challenging, ultimately requiring a major redesign in Tock.
Correctly interfacing with DMA hardware is similarly chal4
lenging. Mechanisms such as interior mutability enable
common kernel architectures including circular dependen4
cies between different layers, but make Tock less compatible
with other embedded software developed in Rust. We share
these insights to articulate how building an OS in Rust
necessitates particular design considerations not present
when using other languages.

Finally, we revisit questions around Tock’s widespread
adoption in Section 6. Most research systems are not
adopted. Fewer still remain open source, and many that do
have primarily been transitioned out of academia to a dedi4
cated startup company or a single established organization.
The Tock open4source project remains under the primary
stewardship of academics and much (though not all) of
the development, especially of core and security4sensitive
functionality, is done by faculty and students at universities.
Doing so has posed challenges: Academic pressures incen4
tivize a focus on novel research, rather than engineering,
while industry pressures incentivize meeting product time4
lines rather than making contributions available upstream.
Urgent product requirements, such as fitting existing code
into limited resources, may conflict with long4term thinking
about sustainable and maintainable design decisions.

We argue that despite its challenges, this model has al4
lowed the project to remain a realistic platform for research

in operating systems, security hardware, sensor networks,
and embedded verification, while facilitating collaboration
across companies that would not have happened otherwise.
As other research platforms gain traction, the model Tock
has used may serve as an option for translating academic
research into wider adoption.

Ultimately, while this long term collaborative effort has
influenced and enhanced the evolution of Tock, the project
has been able to remain focused on the original research
questions and design.

2 Tock’s Original Design
Tock’s original design was targeted towards multi4pro4
grammed and battery4powered or energy harvesting sensor
network platforms. The main constraints in these settings
were robustness and security in the face of incorrect or
nefarious kernel drivers and applications and, crucially, en4
ergy consumption. Tock also needed to run on and provide
portability across a diversity of hardware platforms, each
with different accelerators, sensors, wireless protocols, and
physical interfaces.

Tock targeted a class of computers characterized by:
1. 324bit Cortex4M architecture,
2. ~100kB of RAM and less than 1MB of executable

nonvolatile storage,
3. no virtual memory, but primitive memory protection,
4. an abundance of on4chip hardware peripherals and

accelerators, and
5. low4level access to a wireless radio.

For example, the first deployment of Tock was Signpost [2],
a network of sensor network platforms spread across two
University campuses. Each deployment unit consisted of
a number of independent but interconnected boards, each
with a microcontroller and a selection of different sensors
(temperature, pressure, motion, sound, light, wireless spec4
trum, etc), as well as WiFi, LoRa, and Bluetooth radios to
communicate with each other, pedestrians, and data collec4
tion servers. Each installation ran a number of common
applications (e.g., server and peer4to4peer communication,
inter4board coordination, etc) despite quite different hard4
ware configurations, as well as a number of location4 and
hardware4specific applications (e.g., vehicle detection, air
quality monitoring, etc). Finally, Signpost installations were
solar4powered and, thus, power4constrained.

From these application and hardware4constraints, we de4
rived many of Tock’s initial core design decisions (Figure 2).
For instance, the diversity of applications and sensors pre4
sent in Signpost meant that Tock should have the ability
to run multiple, isolated (potentially buggy or malicious)
and concurrent applications, and its kernel must be highly
extensible to support new microcontrollers and peripheral
devices. The power constraints of Tock’s target platforms, in
turn, required a design that maximized the time that it can
spend in hardware sleep states. We achieved this through

a fully asynchronous kernel design, and extending this
asynchronicity into userspace applications through its sys4
tem call interface. Finally, the wide4spread nature of these
deployments required them to be dependable, and avoid
fate4sharing across applications and drivers, and between
applications. To this end, we adopted a heapless kernel
design with strict separation of application4related state.

These design choices mostly departed from typical
embedded frameworks common in low4resource microcon4
trollers [3, 14, 36]. Most production embedded systems are
designed for extensibility, but each component (e.g., a device
driver, virtualization layer, or application) has unbridled
access to the system and memory—there is no isolation.
Typically all application functionality is compiled and
delivered along4side the rest of the system and cannot be re4
placed dynamically. Because most systems do not separate
applications from a kernel, there is no system call interface
and drivers are free to expose arbitrary interfaces, which
often mix and match asynchronous and blocking I/O. One
commonality is avoiding heap allocation, which is typically
discouraged in embedded systems due to the difficulty in
reasoning about resource exhaustion, but is common in
many other operating system kernels to support dynamic
application demands.

A combination of a newly available type4safe language
and increasingly common support for hardware isolation in
low4resource microcontrollers enabled Tock’s stark depar4
ture from related systems while still minimizing resource
overhead and supporting power4efficient operation. For in4
stance, it embraces Rust’s strong type4 and memory4safety
properties to provide isolation between different capsules
(Tock’s kernel extensions), without using costly and scarce
hardware memory protection resources. This design was
influenced by prior research systems that used type4safe
languages for kernel extensions, including Spin’s use of
Modula43 [7] and Singularity’s use of Sing# [20]. Rust’s
ownership types provided an opportunity to leverage such
a language without the resource or performance overheads
of dynamic memory allocation and garbage collection.

However, we discovered that Rust also places some unex4
pected restrictions on the design and architecture of our
operating system. Specifically, its concepts of ownership
and borrowing present challenges when composing an
operating system out of many interconnected subsystems.
This, in turn, influences Tock’s programming model.

Over the remainder of this section, we want to focus on
Tock’s core design decisions. Starting with the challenges
of interior mutability and how it influenced Tock’s kernel
architecture, we then illustrate its mechanisms for kernel
extensibility and how it maintains application4specific state
in its heapless design. We show how Tock uses both
language4level isolation for kernel isolation, and enables
conventional multiprogramming through processes with

Figure 2: A Tock system is divided into four categories
of components. Processes are hardware4isolated, pre4
emptively scheduled, written in any language and are
un4trusted. They interact with the kernel across a well
defined and narrow system call interface the kernel.
The kernel is composed of a common core, trusted hard4
ware4specific adaptors, along with Capsules—co4opera4
tively scheduled semi4trusted extensions isolated using
the Rust type4system that are access process memory
and hardware through narrow, restrictive, interfaces.

hardware isolation. And finally, we illustrate Tock’s asyn4
chronous kernel and system calls.

2.1 Interior Mutability
A defining feature of Rust is its ownership model. Any Rust
object can either be moved, causing the original owner to
lose ownership, or borrowed temporarily (by taking a refer4
ence). For any borrowed object, there can be at most one
unique mutable reference, or one or more shared immutable
references, and never both. This restriction is fundamental
to retaining type4safety [17].

Many of Rust’s safety advances build on these basic
concepts. However, this model complicates building an
operating system. To illustrate this, consider two operating
system components, a file system and an underlying storage
driver: When the file system performs a write, it modifies
its own internal state, and calls into the storage driver
through a reference. The storage driver then modifies the
storage subsystem’s internal state, performs the operation,
and upon completion issues an asynchronous callback to
the file system driver, again through a reference. Such a
conventional design cannot naïvely be implemented in Rust.
This is because both drivers modify their own internal state
(and thus must invoke each other through a unique, mutable
references), but they form a circular reference—the compiler
cannot verify uniqueness of mutable references in this case.

This presents a design tradeoff. One possible approach is
to use message4passing for interactions between drivers. In
this model, all OS components would be owned by a single

broker. Components can exchange data through this broker
by addressing themselves through non4reference IDs. This
avoids circular references. Yet, it replaces straightforward
function calls between components with a central manager
which introduces complexity and overheads.

The second possible approach is based on interior muta-
bility. An object with interior mutability can change its state
even when referenced through a shared, immutable refer4
ence. This allows both components to reference each other
using shared, immutable references, which do not impose
any restrictions on circular references. This permits conven4
tional references between components. The cost for using
interior mutability is twofold: certain state mutations add an
additional runtime check, and additionally developers must
be careful to ensure that reentrant calls into a single driver
do not break consistency.

Ultimately, Tock settled on using interior mutability to
provide a more explicit program structure with traditional4
looking (circular) references shared between components.

2.2 Extending the Kernel With Capsules
Capsules represent Tock’s primary kernel extension mech4
anism. We use capsules to implement system call drivers,
virtualizers (components that multiplex multiple indepen4
dent users on single hardware peripherals), and other non4
privileged kernel infrastructure.

Making capsules special is our use of Rust’s memory4
and type4safety guarantees for isolation. We implement
capsules as Rust structs in crates (Rust’s compilation units)
where use of unsafe Rust code is forbidden. This limits each
capsule to accessing its own state and interacting with the
rest of the system through explicit, safe APIs made acces4
sible when instantiating the capsule.

This approach provides fine4grained isolation enforced at
compile4time with virtually no runtime overhead. Capsules
are trusted only to uphold liveness (e.g., to not busy4wait
or panic the kernel). We implement the majority of unpriv4
ileged code in Tock through capsules; only low4level chip
support code, MMIO peripheral drivers, and core kernel
infrastructure need to be implemented as other, privileged,
non4capsule code.

2.3 Hardware#Isolated Userspace Processes
Tock can also run preemptively scheduled and hardware4
isolated userspace processes. Originally, these processes
were intended to enable disentangling complex state ma4
chines typically found in embedded systems into distinct
applications without requiring re4writing all code into Rust.
Our vision was to exploit mostly idle microcontrollers
for new functionality by enabling multiprogramming with
multiple independent applications written in different pro4
gramming languages (e.g., C and Lua) running on the
same underutilized embedded platform. This eventually led
to a formal threat model for applications, specifying that

application data must remain secret, even from the kernel
unless explicitly revealed by the application. We achieve
this through the limited, safe APIs available to capsules.
Additionally, applications cannot deny service to each other
at runtime—in other words, they are mutually distrustful.

2.4 Dependability with a Heapless Kernel
and Grants

Enabling multiple applications with high availability on a
memory4limited hardware platform introduces a key chal4
lenge for dependability: Applications can exhaust memory
by continuously requesting resources from the kernel.
Specifically, kernel components often need to maintain state
related to, but inaccessible to userspace applications. When
using a shared kernel heap for such allocations, one appli4
cation can exhaust these resources and infringe on the
availability of other applications.

Tock prevents this using a key design feature, grants: the
kernel does not feature a global heap, relying solely on static
memory allocations and its stack. All dynamic memory
allocations are instead placed in the process’ memory region,
and made inaccessible to userspace through the platform’s
memory protection mechanism. This ensures that processes
can only exhaust their own memory, and that application4
related state does not outlast the process lifetime.

2.5 Asynchronous All the Way Down
To meet its multiprogramming and low4power constraints,
we adopted a fully asynchronous kernel architecture for
Tock. This allows it to embrace asynchronous hardware
(such as DMA4enabled peripherals), multiplex between
work of different applications, and return to low4power
hardware sleep states when there is no work left to do. Tock
uses split4phase asynchrony, as in TinyOS [23], rather than
message passing more common in microkernels that can
rely more readily on dynamic memory allocation [1, 18–21,
25, 32, 35].

Notably, Tock was built before Rust gained native support
for asynchronous programming models and instead uses a
single4stack architecture with circular references and call4
backs between kernel components to signal completions.
Section 5.3 explores the implications of this.

However, Tock did not stop there: in addition to a fully
asynchronous kernel, we also made the system call interface
fully asynchronous. To perform any long running opera4
tion, such as printing a byte4buffer via UART, applications
issue a sequence of calls to the kernel: they share a buffer of
data with the kernel, register a callback (termed an “upcall”)
to be invoked by the kernel when the operation completes,
and then request the operation to start. From this point
onward, applications can perform any other task, or even
start another asynchronous operation concurrently. Finally,
applications can yield to the kernel to await completion,

allowing the system to transition to low4power and the
kernel to eventually invoke the registered callback.

3 Evolution
Today, the primary use of Tock (outside academia) is for
root4of4trust hardware platforms including second4factor
authentication (2FA) devices and security co4processors in
laptops and servers. These settings share similar hardware
constraints and application requirements as the original
sensor network setting. However, they also differ in signif4
icant ways. These systems have both been a surprising
match to parts of Tock’s original design and required
changes to others. In one case, Tock’s generality proved
too burdensome to square with product requirements and
resulted in a hard fork. In another, it led a company, after
using Tock for a few months, to design another custom Rust
operating system for their server’s hardware root4of4trust.

3.1 Hardware Root of Trust
Root4of4trust hardware devices are similar in many respects
to sensor networks hardware. They typically have very little
memory (tens or hundreds of KB) and use a single CPU
core, typically 324bit. They do not have virtual memory but
do support single4address space memory protection. They
include many specialized and sometimes proprietary accel4
erators and peripherals, especially for cryptography.

Their software requirements are also similar to the
urban sensing networks Tock was originally designed for.
Hardware roots4of4trust often run multiple, independently
developed applications that need to be portable across
hardware versions. They often need to support multiple
application languages: while Rust is attractive for new ser4
vices and applications, users also want to continue using
their existing, highly tested and dependable C applications.
Applications and the OS greatly benefit from being resilient
to bugs in both applications and drivers.

Early adopters included two products from Google:
OpenSK, a FIDO4compliant second4factor authentication
device [15], and Ti50, a hardware root of trust for Chrome4
book laptops [16]. Later came vendors for root4of4trust
hardware on datacenter servers, and other end4user device
manufacturers.

Over several years of engagement and development, we
adapted to multiple important differences between hard4
ware roots4of4trust and urban sensing networks. Some of
these were easily compatible with Tock’s design, while
others raised tensions. In this section, we focus on the most
important differences, and how they changed Tock’s design.

3.2 Complexity of Asynchronous Code
Tock was originally designed to support ultra4low power
operation, a common requirement for wireless sensor net4
works and for the Signpost system. Prior operating systems
and applications had established that asynchronous I/O

provided substantial energy saving benefits because a single
thread could execute many operations in parallel and so
spend less time awake [22]. Therefore, Tock embraced both
an event4driven, single4threaded kernel as well as an asyn4
chronous system call interface.

Hardware roots4of4trust, however, are either not energy4
constrained or, when they are, much less so than wireless
sensor networks. A hardware root4of4trust on a laptop or
server’s energy use is insignificant in comparison to the
larger system. USB4based 2FA devices have steady power
through the USB port, and even wireless Bluetooth ones do
not need to tightly optimize their duty cycle, as it is gov4
erned more by human reactions (seconds) than I/O timing
(microseconds to milliseconds).

As a result, while the asynchronous kernel has allowed
Tock to support many simultaneous applications and ser4
vices with a single stack, in userspace it has been more of a
hindrance than benefit for many users. Root4of4trust appli4
cations are typically sequential state machines. A simple
synchronous operation such as “wait for a response with
a timeout” can become a half dozen system calls, to allow
a buffer, register two callbacks, issue commands, then wait
for a callback.

This mismatch led one early adopter of Tock, Oxide, to
discard it after a few months. They wanted to use Tock
for the firmware on their baseboard management controller
(BMC). However, they realized they had a very fixed set of
applications, all of which relied on straightforward sequen4
tial state machines. They saw the complexity in the kernel to
handle the interleaving of asynchrony, plus the complexity
in userspace to convert this into a synchronous API, and
decided to write a new synchronous OS in Rust, named
Hubris [9].

A second early adopter of Tock, Ti50, forked early on
and stayed involved for many years, but over time their
participation has diminished as their fork and mainline Tock
have diverged. They also had concerns with asynchronous
system calls, but for a different reason: code space. Their
MCU is RISC4V based, and relatively immature LLVM code
generation for RISC4V can result in very expensive system
calls. At the same time, they were on an extremely tight
timeframe to ship their firmware. They forked Tock to in4
troduce a blocking command system call. This allowed them
to change a 4 system call sequence (subscribe, command,
yield, unsubscribe) into a single call. While there was inter4
est from other developers to introduce such a new system
call into the mainline kernel, once Ti50 had forked they
were not strongly motivated to drive it, and it fell by the
wayside. Since then, we have introduced a new variant of
the yield system call, described below, that simplifies cre4
ating synchronous libraries using the asynchronous system
call interface.

Today, while some users of Tock are ambivalent about
synchronous or asynchronous system calls, others see them

as essential for their root4of4trust and automotive appli4
cations. Asynchrony, however, had an additional complica4
tion, which necessitated a complete redesign of the system
call API. We learned that the asynchronous semantics of the
original system calls were incompatible with a sound Rust
userspace without a lot of unsafe code.

3.3 Rust in Userspace and Tock v2.0
Tock’s original design was intended to allow userspace
processes to be written in any language (including assem4
bly), but almost all applications were written in C. Early
non4academic adopters argued that they would like Rust in
userspace as well. While Tock had a Rust userspace library,
we soon learned it was unsound. Properly supporting a Rust
userspace with minimal unsafe code required a redesign
of the system call ABI, core kernel loop, and the capsule
interface.

3.3.1 Respecting Ownership
The challenge that emerged is that Rust’s memory owner4
ship semantics had to be expressed in the system call ABIs
and enforced by the kernel itself, rather than entrusted to
capsules. Both the allow (sharing a buffer) and subscribe
(registering a callback) system calls allow userspace to share
references to resources in their memory: data in the case
of allow, and code in case of subscribe. The original cap4
sule API simply validated supplied values, and then passed
ownership over types wrapping these references to capsule
code, Tock’s semi4trusted kernel extensions.

The problem arose when userspace tried to revoke one
of these buffers or function pointers, by calling allow
or subscribe again. While the system call semantics said
that a capsule was required to replace the old value with
the new one, this couldn’t be enforced by the compiler: a
capsule owned these wrappers, and could always stash the
old one away in a variable. A Rust userspace needs to be
able to carefully track who holds on to references to which
resources, and how long values live, but capsules presented
an obfuscated interface that could hold on to references for
arbitrary lengths of time. A semi4trusted kernel extension
holding onto and using a userspace reference arbitrarily
would compromise all of Rust’s safety guarantees, which
greatly reduces the value of a Rust userspace to security4
critical applications.

3.3.2 Swapping Semantics
Today, the allow and subscribe system call APIs have
“swapping” semantics, similar to how TinyOS manages
buffers [23]. When userspace invokes one of these calls, the
call returns the previously shared buffer or function pointer.
On the first call, the kernel returns a dummy empty holder
value: a zero4length buffer for allow and a special “null”
callback for subscribe. Userspace is responsible for ensur4

ing that references remain live while the kernel holds them.
Within the kernel, capsules are no longer responsible for
managing these buffers or callbacks; they are held and man4
aged by the kernel. Capsules can access them only through
temporary Rust references in closures, which ensure they
cannot take ownership over these types. This final change
required completely rewriting the core kernel loop.

3.3.3 Tock v2.0
This redesign of the system call API (and ABI) meant exist4
ing applications would no longer work. We debated having
both versions exist concurrently, but the code size cost was
too large. This led to a clean break in Tock v2.0. In addition
to the swapping semantics of allow and subscribe, Tock
added a new variant of allow that granted the kernel read4
only access to a userspace buffer. This turned out to be a
must4have for root4of4trust applications: they would often
store public keys in read4only flash memory, and want to
pass these values into the kernel for cryptographic opera4
tions. Without allow-readonly, userspace had to copy
these into RAM; otherwise, it would be possible for the
kernel to inadvertently try to write to read4only memory
and trigger an unrecoverable fault.

3.4 Process Loading
Tock’s process architecture supports independent applica4
tions that the kernel can individually load, start, and stop.
This was designed to support flexibility for deployments
in the field (e.g., Signpost). In an early root4of4trust appli4
cation, Tock was not the lowest layer of trusted software.
Instead, a trusted bootloader verifies a signed image that
includes Tock and a set of applications. While this required
repackaging them together along with a signature, these
changes were external to Tock and so required no changes
to the kernel itself.

One of the root4of4trust use cases introduced a new
security model, in which applications could be individually
signed and replaced. This meant that the Tock kernel had
to be able to run a series of cryptographic checks on
process binary images before executing them. Cryptogra4
phy implemented in hardware peripherals is asynchronous,
so this forced the process loading sequence from a simple
synchronous pass over the header and integrity checks
into a multi4step state machine. Processes are first checked
for structural/header integrity, then cryptographic integrity
and authenticity, and finally runnability. This in turn
required rewriting the Tock boot sequence from a piece of
sequential code into an asynchronous state machine.

The transition to support signed applications had one
major benefit and one large drawback. The benefit was
that it paved the way to dynamically load and run new
applications without rebooting, a feature some users had
always put as desirable but not critical. As process loading
was now an asynchronous state machine, this became much

easier: all the system had to do was trigger the kernel to
check the new process. The drawback was code complexity.
For codespace4limited systems that didn’t need dynamic
process loading (e.g., the single signed image), the new
approach added a lot of code which wasn’t needed. The
kernel therefore supports either approach, which can be
configured at compile4time: the boot sequence for a build
can either invoke the synchronous or asynchronous loader.

3.5 External Dependencies
One final way in which Tock has evolved is an issue that
many secure Rust systems have struggled with: external
dependencies. Because unsafe Rust code can perform arbi4
trary operations, including an external dependency requires
that one trust it does not violate the safety guarantees
the system depends on. Rudra, for example, demonstrated
many places in which external dependencies could be used
to break memory safety [6]. Initially, Tock took a very hard
stance on this: the only external dependency allowed is the
Rust core crate, part of its standard library.

In practice, though, third4party libraries provide signifi4
cant useful functionality, much of which would be difficult
or undesirable to re4implement or vendor. For example,
root4of4trust use cases rely heavily on cryptography, often
in privileged kernel drivers. In some cases, cryptographic
primitives are provided by the hardware, but often higher4
level protocols, such as stream ciphers, signature verifica4
tion, or certificate validation must be done in software.
Correct implementation of cryptography is security sensi4
tive beyond just memory safety, and it is undesirable to
re4implement ciphers or protocols or maintain implemen4
tations, especially when there are well4maintained or even
formally verified third4party libraries [13]. Tock has made a
specific exception to the external dependency rule for cer4
tain cryptography libraries that have a limited dependency
tree and are robustly maintained.

However, using third4party libraries would be useful in
more cases, such network and wireless protocols. Trusting
third4party libraries remains an open research problem [26,
34].

4 Discovered Rust Opportunities
Rust’s expressive type system has benefited Tock develop4
ment beyond mere memory4 and type4safety guarantees.
We have been able to encode higher4level properties of
both operating system and embedded system design using
the type system, enabling compile4time checks against both
invalid and unacceptable system compositions, improved
buffer management, and expressive hardware interfaces.

4.1 Enforcing Correct Composition
Tock supports a range of hardware platforms and is
designed to be configurable for a rich set of devices. We

SPI 1
Active High/Low

Type Required

Type Provided

LCD Screen
Needs Active High SPI

Composes
Successfully

LCD Screen
Needs Active High SPI

Fails to
Compose

SPI 2
Active Low Only

Figure 3: Enforcing layering requirements at configura4
tion time. Higher4level hardware4agnostic drivers spec4
ify their needs and build on top of lower4level peripheral
drivers which express their capabilities. Including these
requirements in the Rust type system allows Tock to
ensure configurations are valid at compile time.

achieve this flexibility by dividing up system components
into composable layers. For instance, a hardware timer pe4
ripheral implements a common interface that allows clients
to interact with this peripheral in a hardware4agnostic way.
Then, another layer can use this interface to virtualize the
single timer resource for multiple clients.

However, this flexibility also comes with challenges:
configuring a Tock kernel instance for a hardware plat4
form requires correctly matching microcontroller4agnostic
drivers, like a SPI4connected sensor, with the appropriate
hardware4specific peripheral implementation, like a SPI
controller. With this composition, even subtle mismatches
in the assumptions and limitations of layers can result in
(subtly) incorrect behavior. Drivers are commonly located
in separate files, written by different developers at different
times. Incorrectly assuming a certain driver stackup is valid
is an easy, but challenging to debug, mistake.

Instead, we have found that we can use Rust’s type
system to validate correct composition at compile time. We
do so by allowing drivers to express high4level aspects of the
interface they provide through type annotations. Clients of
these interfaces, in turn, annotate type4constraints to only
accept drivers that provide compatible semantics.

For example, the SPI communication bus allows multiple
external devices to communicate with a microcontroller
using a shared bus. A separate “chip select” (CS) pin for
each device indicates that software has selected that device
to use the bus. Different devices expect the CS pin to be
active4high, active4low, or configurable. This is microcon4
troller4agnostic information that a higher4layer driver can
encode. Similarly, some SPI hardware supports only active4
high pins, only active4low pins, or can configure the active
CS level. Even within a single microcontroller, multiple SPI
peripherals may have different such restrictions. This is in4
formation that the microcontroller4specific hardware driver
should know. Correct composition requires the SPI driver to

Figure 4: Tock’s SubSlice abstraction allows kernel
components to pass buffers back and forth, resize them
at will, while retaining the ability to restore access to
the complete underlying buffer.

both support and be configured for the same active polarity
as the peripherals it connects to (Figure 3).

Using template constants in Rust types we can express
the capabilities of hardware drivers and the requirements
of chip4specific drivers, and ensure they are configured
correctly. Mismatches are caught at compile type through a
type error.

4.2 Buffer Management
To support concurrency within the kernel with a single
stack, internal Tock kernel APIs rely heavily on split4
phase asynchrony. A split4phase operation has two parts: a
method call to start the operation and a callback to signal
completion.

Rust’s buffer management complicates split4phase APIs.
The canonical way to represent a buffer in Rust is with
a slice, which is a pointer and length. Rust APIs typically
pass slices as a temporary reference, whose lifetime expires
when the function returns. Asynchronous operations, how4
ever, must be able to hold on to the reference until the
operation completes. For instance, a DMA4capable radio
needs to hold unique “ownership” over a buffer beyond the
end of a start_receive() function call, until an asynchro4
nous interrupt indicates that a full packet has been received.

Tock APIs allow subsystems to hold on to buffers longer
than the duration of a function call by passing slice refer4
ences with a 'static lifetime. The 'static lifetime is a
special lifetime in Rust that means the reference is valid
for the entire program duration (Tock allocates its buffers
statically at boot). Because Rust’s ownership rules prohibit
multiple unique, mutable references, passing a 'static ref4
erence to a driver makes it inaccessible to the caller of that

driver; calling the method conceptually moves the buffer’s
ownership into that driver. The driver provides this eternal
reference back to the client in the completion callback.

This approach of passing ownership of 'static buffers
across software layers, however, breaks down when trying
to pass dynamic subsets of data. A caller cannot simply
pass a subset of a buffer (i.e., increment the start pointer),
because doing so would mean giving up ownership of this
part of the buffer forever, and two subslices originating from
the same buffer cannot later be re4merged into the original,
larger one. Each layer must handle the complete buffer, so
it can be returned in its entirety to the original caller. Early
versions of Tock kernel interfaces tried to solve this problem
by accepting both a slice as well as a separate offset and
length describing the specific subset of the buffer to operate
on (e.g., the fraction of the buffer to encrypt with a key).

Unfortunately, requiring interfaces to pass a slice, subset
offset, and subset length proved cumbersome and error4
prone. Tock introduced two mechanisms to help alleviate
this problem. This first is a SubSlice type (Figure 4) that
allows individual layers to access a buffer as if it was
exactly the length of the valid data, without losing owner4
ship of the entire buffer. The second mechanism uses const
parameters to enable software layers to express buffer size
requirements. These parameters are accessible at compile4
time and allow higher layers to construct static buffers that
are sufficiently sized for each of their dependencies.

4.3 Memory#Mapped I/O Abstractions
Microcontrollers conventionally use Memory4Mapped I/O
(MMIO) to interface with hardware peripherals. Peripherals
claim memory addresses where they respond to memory
read or write events, typically triggering underlying hard4
ware operations. Translating hardware specifications from
a datasheet into raw memory addresses and packed structs
that correctly map to the hardware’s memory layout, and
modeling access permissions for each memory mapped reg4
ister is tedious and error prone.

Tock leverages the Rust macro system to provide a
domain specific language for capturing MMIO specifica4
tion. This high4level specification maps closely to typical
datasheets, making it easy to translate them into code and
avoid mistakes. The resulting data structure wraps each
MMIO address in a unique type, which only exposes read or
write operations supported at that address. These address4
specific types can further define subtypes, Fields, that
encode information such as valid enumerations as well as
offset and length within a memory word. Now, bit4shifting
code is automatically generated, rather than left to error4
prone manual code.

// To call this function, the caller must
// have a ProcessMgmtCap instance to pass in,
// which is an empty marker trait that is
// otherwise unused and elided at runtime.
fn destroy_process(&self, _cap: &ProcessMgmtCap) {
 ...
}

// Capabilities can only be created during
// platform initialization. They can then be
// passed into privileged drivers.
struct MyCap;
unsafe impl ProcessMgmtCap for MyCap;
let privileged_driver = ProcessManagementDriver {
 cap: MyCap,
 ...
}

Listing 1: Tock uses marker traits to restrict access
to sensitive APIs within the kernel, allowing untrusted
capsules to gain special privileges, but only if trusted
platform initialization mints and passes a compile4time4
only capability. Attempting to call the API function
without the capability will fail at compile4time.

4.4 Privileged APIs with Capabilities
Rust distinguishes between safe and unsafe code, and
the compiler can reject unsafe on a per4crate (a Rust
compilation unit) basis. This enables Rust code to have
restricted APIs—marked unsafe—that can only be called
in certain contexts. For an OS, this is particularly useful,
as certain privileged functionality must be exposed (e.g.,
stopping a process), yet many kernel modules that interact
with processes (e.g., implementing userspace timers) should
never be able to invoke this functionality. However, while
marking functions unsafe provides an enforcement mecha4
nism, it provides only all4or4nothing access without context
as to when access should be provided. Tock remedies
this with a “capabilities” mechanism (Listing 1), built on
the compiler4enforced unsafe, to create zero4sized types
(hence, with zero overhead at runtime) to express restricted
APIs and use the type system to mediate the permissions
required to use those APIs.

5 Discovered Rust Pitfalls
While Rust has benefits for implementing an OS, it also
introduces unique challenges for writing low4level code.
Over the course of Tock’s development, we found instances
where traditional wisdom and practices for building OSes
no longer applied, and could even lead to violating some of
Rust’s invariants required for safety and soundness.

5.1 Rust’s Memory Model for an OS
Many of Rust’s innovations around safety focus on restric4
tive assumptions around how memory is used. For instance,
recall that a Rust value may have either multiple immutable
shared references, or a single mutable reference, and never

both. The compiler checks these invariants through its life4
time and borrowing mechanisms.

However, these rules are difficult to enforce in an oper4
ating system context. The notion of running processes, with
application code not implemented in Rust, results in the
compiler lacking visibility to enforce memory invariants.
Alternative approaches like Theseus [8] avoid these issues
by requiring all operating system components and applica4
tions to be written in Rust and benefiting from compiler
checks. However, our experience shows this is not practical:
real4world devices must be able to run legacy software writ4
ten in C, and crucial benefits stem from process isolation.

Instead, Tock employs hardware memory protection
mechanisms and multiple privilege modes to isolate un4
trusted userspace applications. Hence, Tock must bridge
Rust’s static, compile4time safety invariants onto this user4
space–kernel boundary, either by weakening the set of
invariants that Rust expects to be maintained, or by em4
ploying dynamic checks across interactions between kernel
and userspace components. In practice, Tock uses both
approaches to efficiently preserve Rust’s soundness across
interactions with untrusted code. We illustrate this by
revisiting Tock’s allow mechanism, used to exchange data
between the kernel and userspace applications [24].

5.1.1 Mutably Aliased Application Memory
When an Tock application issues an allow system call, it
passes a pointer and length to share a buffer with a kernel
capsule. Although capsules run in kernel mode with access
to all userspace memory, their restriction to using only safe
Rust prevents them from accessing arbitrary memory. By
explicitly allow4ing buffers, applications give these kernel
components permission to read and write a specific section
of their memory. In the kernel, we represent such a buffer
through an Allow handle which, after checking that the
issuing process is still alive, can be used to safely obtain a
Rust slice reference to its underlying memory.

This mechanism is similar to how memory is shared
between the kernel and userspace applications in other
OSes. However, Tock’s use of Rust presents some additional
challenges that made our initial implementation unsound.
First, applications can share the same buffer with two allow
system calls, giving a kernel capsule two mutable references
to the same memory. This breaks Rust’s aliasing XOR muta-
bility invariant. Writing to the first buffer may change the
contents of the second, whereas the compiler assumes that
the contents of the second remain stable. This is unsound,
and such violations of Rust’s aliasing assumptions have led
to exploitable security bugs in practice [28].

To address this, ideally the Rust compiler would statically
determine that two shared buffers can never overlap, but
since applications are compiled separately this is not pos4
sible. Alternatively, Tock could reject overlapping shared
buffers with a runtime check. However, this introduces

unreasonable runtime overheads for the systems that Tock
targets. Instead, we choose to reduce the invariants that
Rust requires us to maintain for shared buffers. By changing
their type signature from a mutable byte4slice (&mut [u8])
to a shared slice over interior4mutable cells (&[Cell<u8>]),
Rust no longer assumes that the buffers contents remain
stable for the duration that their references exist.

5.1.2 Violating Rust’s Type Invariants
Sharing process memory with the kernel led to another is4
sue around upholding Rust’s strict requirements for sound4
ness. Applications reclaim a shared buffer from the kernel
by issuing another allow system call with a zero4length
buffer. The kernel held a reference to this zero4length buffer,
even if its address was null. However, this was unsound:
Rust requires that the address of references must never be
null. Based on this requirement, it performs an optimization
known as niche filling: it can use uninhabited values of type
to encode other information. For instance, given that refer4
ences must never be null, a value of type Option<&[u8]>
occupies the same space as a value of type &[u8], as the
Option’s None variant can be simply be encoded as a null4
value. However, this means that Tock’s practice of taking
an arbitrary, user4supplied pointer as the address for a zero4
length slice reference breaks Rust type4safety. Instead, we
must use a dynamic, runtime check for this operation and
use an artificial, non4null pointer for creating zero4length
slice references shared with the kernel.

5.1.3 Emphasis on the unsafe Boundary
Bugs like these show that, while Rust can give developers
confidence in the safe part of their programs, it also requires
significant care to ensure that the boundary of safe code
maintains the extensive set of safety4invariants that Rust
imposes. In many cases, prior languages like C imposed
fewer such invariants (e.g., concerning aliasing). And while
the consequences of violations are often subtle and depen4
dant on compiler optimizations, they can nonetheless intro4
duce critical safety and security vulnerabilities in arbitrary,
safe and unsafe parts of the codebase.

5.2 Lack of unsafe Guidance
As the previous section illustrates, explicitly separating safe
and unsafe code is both a major feature, and requirement of
correctly using Rust. However, during early stages of Rust’s
development there was little guidance on how and when to
use unsafe in a large software project to ensure maintain4
ability and correctness over time. Our experience shows
that modularizing the OS and prohibiting unsafe in certain
crates provides clear guidance for developers and encour4
ages external contributions that are consistent with Tock’s
design. However, within crates that do permit unsafe, we
have found that developers often use unsafe in new ways,

2018 2020 2022 2024
0
2
4
6
8
10
12

To
ck

 k
er

ne
l k

Lo
C

(🟊
)

0

50

100

150

200

250

un
sa
fe

 b
lo

ck
s (

■)

Figure 5: Increase over time in the size of the Tock kernel
due to additional features and abstractions compared
with the amount of kernel code that is unsafe Rust.
While the kernel has grown significantly over a decade,
unsafe blocks have remained steady.

particularly to support bespoke hardware features, and then
layer implementations on top of the unsafe use. Over time,
this has lead to numerous unsafe uses that are both hard to
reason about and hard to remove.

Meanwhile, Rust has adopted a more narrow definition
of safety, specifically focused around the notion that safe4
code cannot exhibit undefined behavior [30]. This is distinct
from other forms of functional correctness, for which Tock
has at times used unsafe.

In hindsight, we should have created more abstractions
around unsafe to both guide and support contributors (such
as Tock’s capabilities), and to limit the diversity of unsafe
use in the kernel. While the project has managed to preserve
a steady and low use of unsafe in the kernel, limiting its
prevalence requires continuous maintenance work.

5.3 Using External Software Libraries
Despite a robust package management and dependency
ecosystem, Rust has provided minimal benefit for Tock in
terms of re4using existing drivers and software libraries.

A major challenge is the Tock kernel’s asynchronous, sin4
gle4stack design being incompatible with available libraries:
most existing code is architected to be either blocking,
incompatible with Tock’s multi4programming model, or use
Rust’s Futures for asynchronous computations. However,
we found that Futures have significant overheads com4
pared to Tock’s callback4based design.

Additionally, as described in Section 3, we are cautious
to integrate external code into Tock as both the code and
dependency tree is difficult to audit. Whether there is a safe
way to integrate external code into an OS kernel remains
an open question. We anticipate that additional tooling
is required to analyze and continuously monitor external
packages across package updates over time.

5.4 Verification Still Useful
Rust’s type system provides a powerful foundation for, and
incentivizes writing robust code. However, logic correctness
remains entirely the programmer’s responsibility. For com4
plex subsystems with subtle correctness requirements we
found that Rust does not substantially help avoid bugs. Two
subsystems in particular–timer virtualization and memory
protection–have presented numerous subtle logic bugs. We
are exploring verification techniques integrated into Rust to
improve correctness of these challenging subsystems.

6 Supporting an Open Source Ecosys#
tem from Academia

Tock today is an open4source community led from acade4
mia. It never got swallowed up by tech4transfer to a single
industrial user. It did not become a startup focused on
providing support or development of the OS. Instead, it has
walked the line of academic management and industrial
deployment. Over three4quarters of the current leadership
team is comprised of academics (with the remaining quar4
ter coming from industry). Our experience maintaining
an open4source, industry4deployed operating system from
academia has presented several challenges and key benefits
that we explore here.

6.1 Challenges of Academic Open#Source
Somewhat stereotypically, some of the largest challenges
for Tock are “solved problems” with known implementa4
tions that still require substantial engineering effort to
apply. Several times we saw academic focus fade once prob4
lems move past the hard and interesting stage. Engineers
directed towards certain tasks can easily overcome this
problem. This proves more difficult with independent con4
tributors with primarily research motivations. Eventually,
this can lead to gaps in support throughout the system.

As an example of this problem, one long4term need for
the project has been a hardware4in4the4loop testing system.
Supporting a diversity of architectures, chips, and specific
board implementations requires frequent testing on real
hardware platforms. In practice, we would find that some
lesser4used platforms would be non4functional for weeks
or months before someone would stumble upon this issue.
While an automated hardware testing framework was a
clear solution, the process of creating it was an enormous
engineering effort without clear research questions. Mean4
while industry adopters were interested in using the frame4
work, but were not incentivized to create a general4purpose
system for testing hardware they did not use. After years of
need, a framework was eventually developed by contracting
the effort to a full4time engineer.

Collaboration between academia and industry can also
face typical timeline mismatches. Faced with product dead4
lines, adopters have feature needs that cannot wait for

academic consideration and discussion. For an open4source
project, this tends to result in forks or custom downstream
additions to the OS. To some degree, these are expected
and acceptable. The design of Tock intentionally separates
components so that they can be replaced if necessary. But
downstream changes implemented by industry adopters do
not necessarily pay back to the broader community. On sev4
eral occasions we have found ourselves recreating features
that had previously been implemented by industry users but
had never been cleaned up and shared with the community.

6.2 Benefits of Academic Open#Source
Being rooted in academia has also provided important
benefits for Tock. Sheltering in academia allowed Tock to
survive its first few years of development. The time before
initial adoption by external users is a challenging period
for open4source projects. They miss out on the energy and
direction provided by adopters. For OSes in particular, a
challenge is that an early OS is only capable of supporting a
few platforms with basic functionality. Through addition of
drivers and platform support, it takes time to build up to a
critical mass. Having to prove its value for startup funding
during this initial period would have been very challenging
for Tock. Instead, Tock operated for years with essentially
zero funding. This gave us room to experiment and build
while being “funded” by our day jobs in academia.

Later in the life of Tock, after we had established users
and support, the academic core of Tock gave us a long4
horizon view separated from production deadlines. What is
internally useful and expedient to implement for one user is
often not good for other users or potential future adopters.
In the context of developing systems in Rust, tight timelines
can increase the desire to get around the compiler via the
unsafe escape hatch. This trades something that seems to
work fine for now for future soundness concerns. Instead,
the core development team on Tock has felt empowered to
take the time to get “get things right”.

The updates to the system call API, mentioned in Sec4
tion 3.3, are a good example of this. The need for a revised
syscall interface to support a Rust userland was first made
apparent in early 2019. Other issues with the system call
interfaces were collected and an official start to the 2.0
version of the kernel was begun a year later in early 2020.
The first draft of the documentation for the revised syscall
interface was created in mid42020. The release of Tock
2.0 finally occurred in mid42021. The revised design was
given plenty of time to be discussed and considered before
final deployment, and we were in no rush to complete
it as major breaking changes in an OS kernel are a rare
occurrence. Being insulated from production deadlines and
startup funding cycles provided time and patience required
for deep, technical discussions and considerations.

An added benefit of being hosted in academia is bring4
ing undergraduate students into the project. The students

gain training in real4world systems engineering, while Tock
gains engineering effort, and there are a nearly4endless
supply of drivers which can be added to the OS but are not
immediately critical for any particular users. Many features
were developed by undergraduate students interested in
gaining experience.

For graduate students Tock has proved to be an excellent
source of hard systems considerations that are still fairly
constrained. Over the years, grad students have used Tock
for experimentation with automatic clock configuration to
save energy [10], for isolation of existing C libraries within a
Rust system [31], for using the Rust type system to automat4
ically enforce buffer size requirements at compile4time, and
to reduce code size for Rust systems [5]. A recent collabo4
ration includes grad students working on code verification
systems who were interested in the constrained interfaces
and security guarantees provided by Tock [29].

7 Conclusion
After a decade of development, multiple major releases,
thousands of commits and pull requests, several developer
meetings, multiple graduated Ph.D.s and new faculty mem4
bers, and now tens of millions of active devices, this paper
shares the evolution of Tock’s design, our experiences using
Rust (both correctly and incorrectly), and how the project
has benefited from and served both academia and industry.

We hope the technical details and experiences will guide
operating systems builders who are considering using Rust,
and inform a pathway for continued development of a
research operating system with practitioners deploying it.

8 Acknowledgements
We thank our shepherd and anonymous reviewers who
provided valuable feedback on how to communicate the
experiences and lessons in this paper.

At least 400 people have contributed to the Tock open4
source project. In particular, Johnathan Van Why, Hudson
Ayers, and Alexandru Radovici are additional core main4
tainers who participated in the project evolution described
in this paper. The earliest of Tock’s design iterations were
encouraged and influenced by Michael Andersen, who
also designed and built the hardware platform that Tock
initially targetted. Niko Matsakis initially suggested the use
of interior mutability for Tock’s concurrency model. Do4
minic Rizzo, Alyssa Haroldson, Bryan Cantrill, and Bobby
Reynolds encouraged commercial adoption of Tock and
provided much of the feedback that informed the project’s
evolution.

This work was funded in part by NSF grants 2303639,
2443589, 2144940 and 1505728, 1505684 as well as a Google
Research Award.

References
[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. 1986. Mach: A new ker4
nel foundation for UNIX development. In Proceedings of the USENIX
1986 Summer Technical Conference and Exhibition, 1986. The USENIX
Association, El Cerrito, CA, USA, Atlanta, GA, USA, 93–112.

[2] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel
Rohrer, Bradford Campbell, and Prabal Dutta. 2018. The Signpost
Platform for City4Scale Sensing. In 2018 17th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2018.
188–199. 10.1109/IPSN.2018.00047

[3] The Apache Software Foundation. Apache NuttX. Retrieved August
31, 2025 from https://nuttx.apache.org/

[4] Hudson Ayers, Prabal Dutta, Philip Levis, Amit Levy, Pat Pan4
nuto, Johnathan Van Why, and Jean4Luc Watson. 2022. Tiered
trust for useful embedded systems security. In Proceedings of the
15th European Workshop on Systems Security (EuroSec '22), 2022.
Association for Computing Machinery, Rennes, France, 15–21.
10.1145/3517208.3523752

[5] Hudson Ayers, Evan Laufer, Paul Mure, Jaehyeon Park, Eduardo
Rodelo, Thea Rossman, Andrey Pronin, Philip Levis, and Johnathan
Van Why. 2022. Tighten Rust’s Belt: Shrinking Embedded Rust
Binaries. In Proceedings of the 23rd ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES 2022), 2022. Association for Computing Machinery,
San Diego, CA, USA, 121–132. 10.1145/3519941.3535075

[6] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo
Kim. 2021. Rudra: Finding Memory Safety Bugs in Rust at the Ecosys4
tem Scale. In Proceedings of the ACM SIGOPS 28th Symposium on Op-
erating Systems Principles (SOSP '21), 2021. Association for Computing
Machinery, Virtual Event, Germany, 84–99. 10.1145/3477132.3483570

[7] Brian N. Bershad, Stefan Savage, Przemysław Pardyak, Emin Gün
Sirer, Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan
Eggers. 1995. Extensibility, Safety and Performance in the SPIN
Operating System. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (SOSP '95), 1995. Association for
Computing Machinery, Copper Mountain, Colorado, USA, 267–283.
10.1145/224056.224077

[8] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020.
Theseus: an Experiment in Operating System Structure and State
Management. In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), 2020. USENIX Association, 1–19.

[9] Bryan Cantrill. 2021. Hubris and Humility. Retrieved April 17, 2025
from https://oxide.computer/blog/hubris4and4humility

[10] Holly Chiang, Hudson Ayers, Daniel Giffin, Amit Levy, and Philip
Levis. 2021. Power Clocks: Dynamic Multi4Clock Management for
Embedded Systems. In Proceedings of the 2021 International Confer-
ence on Embedded Wireless Systems and Networks (EWSN '21), 2021.
Junction Publishing, Delft, The Netherlands, 139–150.

[11] Thomas Claburn. 2023. Microsoft is busy rewriting core Windows
code in memory4safe Rust. Retrieved October 7, 2023 from https://
www.theregister.com/2023/04/27/microsoft_windows_rust/

[12] Jonathan Corbet. A first look at Rust in the 6.1 kernel. Retrieved April
19, 2024 from https://lwn.net/Articles/910762/

[13] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. 2019. Simple High4Level Code for Cryptographic Arith4
metic 4 With Proofs, Without Compromises. In 2019 IEEE Symposium
on Security and Privacy (SP), 2019. 1202–1219. 10.1109/SP.2019.00005

[14] FreeRTOS. FreeRTOS: Real4time operating system for microcon4
trollers and small microprocessors. Retrieved August 31, 2025 from
https://www.freertos.org/

[15] Google. OpenSK. Retrieved August 31, 2025 from https://github.com/
google/opensk

[16] Google. Ti50 Releases. Retrieved August 31, 2025 from https://
chromium.googlesource.com/chromiumos/platform/ec/+/gsc_utils/
docs/ti50_firmware_releases.md

[17] Dan Grossman. 2002. Existential Types for Imperative Languages.
In Proceedings of the 11th European Symposium on Programming
Languages and Systems (ESOP '02), 2002. Springer4Verlag, Berlin,
Heidelberg, 21–35. 10.1007/3454044592748_3

[18] Per Brinch Hansen. 1970. The Nucleus of a Multiprogramming
System. Communications of the ACM 13, 4 (April 1970), 238–241.
10.1145/362258.362278

[19] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S.
Shapiro. 2004. Reducing TCB size by using untrusted components:
small kernels versus virtual4machine monitors. In Proceedings of
the 11th Workshop on ACM SIGOPS European Workshop (EW 11),
2004. Association for Computing Machinery, Leuven, Belgium, 22–
es. 10.1145/1133572.1133615

[20] Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the
software stack. SIGOPS Operating Systems Review 41, 2 (April 2007),
37–49. 10.1145/1243418.1243424

[21] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP '09), 2009. Association for Computing Ma4
chinery, Big Sky, Montana, USA, 207–220. 10.1145/1629575.1629596

[22] Kevin Klues, Vlado Handziski, Chenyang Lu, Adam Wolisz,
David Culler, David Gay, and Philip Levis. 2007. Integrating Con4
currency Control and Energy Management in Device Drivers.
SIGOPS Operating Systems Review 41, 6 (October 2007), 251–264.
10.1145/1323293.1294286

[23] Philip Levis. 2012. Experiences from a Decade of TinyOS Develop4
ment. In 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), October 2012. USENIX Association, Holly4
wood, CA, 207–220.

[24] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin,
Pat Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogram4
ming a 64kB Computer Safely and Efficiently. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP '17), 2017.
Association for Computing Machinery, Shanghai, China, 234–251.
10.1145/3132747.3132786

[25] Jochen Liedtke. 1993. Improving IPC by kernel design. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems Principles
(SOSP '93), 1993. Association for Computing Machinery, Asheville,
North Carolina, USA, 175–188. 10.1145/168619.168633

[26] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020.
Retrofitting Fine Grain Isolation in the Firefox Renderer. In 29th
USENIX Security Symposium (USENIX Security 20), August 2020.
USENIX Association, 699–716.

[27] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf:
Isolation and Communication in a Safe Operating System. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), November 2020. USENIX Association, 21–39.

[28] NIST National Vulnerability Database. 2023. CVE42023430624 in the
Rust Wasmtime crate: Wasmtime has Undefined Behavior in Rust
runtime functions. Retrieved November 1, 2024 from https://nvd.nist.
gov/vuln/detail/CVE42023430624

[29] Vivien Rindisbacher, Evan Johnson, Nico Lehmann, Tyler Potyondy,
Pat Pannuto, Stefan Savage, Deian Stefan, and Ranjit Jhala. 2025.
TickTock: Verified Isolation in a Production Embedded OS. In
Proceedings of the 31st ACM Symposium on Operating Systems
Principles (SOSP '25), 2025. Association for Computing Machinery.
10.1145/3731569.3764856

[30] The Rust Contributors. 2024. Unsafe Code Guidelines Reference –
Glossary. Retrieved December 2, 2024 from https://rust4lang.github.
io/unsafe4code4guidelines/glossary.html

[31] Leon Schuermann, Jack Toubes, Tyler Potyondy, Pat Pannuto, Mae
Milano, and Amit Levy. 2025. Building Bridges: Safe Interactions
with Foreign Languages through Omniglot. In Proceedings of the 19th

https://doi.org/10.1109/IPSN.2018.00047
https://nuttx.apache.org/
https://doi.org/10.1145/3517208.3523752
https://doi.org/10.1145/3519941.3535075
https://doi.org/10.1145/3477132.3483570
https://doi.org/10.1145/224056.224077
https://oxide.computer/blog/hubris-and-humility
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://lwn.net/Articles/910762/
https://doi.org/10.1109/SP.2019.00005
https://www.freertos.org/
https://github.com/google/opensk
https://github.com/google/opensk
https://chromium.googlesource.com/chromiumos/platform/ec/+/gsc_utils/docs/ti50_firmware_releases.md
https://chromium.googlesource.com/chromiumos/platform/ec/+/gsc_utils/docs/ti50_firmware_releases.md
https://chromium.googlesource.com/chromiumos/platform/ec/+/gsc_utils/docs/ti50_firmware_releases.md
https://doi.org/10.1007/3-540-45927-8_3
https://doi.org/10.1145/362258.362278
https://doi.org/10.1145/1133572.1133615
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1323293.1294286
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/168619.168633
https://nvd.nist.gov/vuln/detail/CVE-2023-30624
https://nvd.nist.gov/vuln/detail/CVE-2023-30624
https://doi.org/10.1145/3731569.3764856
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 25), 2025. USENIX Association, 595–613.

[32] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999.
EROS: a fast capability system. In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles (SOSP '99), 1999. Associ4
ation for Computing Machinery, Charleston, South Carolina, USA,
170–185. 10.1145/319151.319163

[33] Jeffrey Vander Stoep. 2022. Memory Safe Languages in Android
13. Retrieved October 7, 2023 from https://security.googleblog.com/
2022/12/memory4safe4languages4in4android413.html

[34] David Terei, Simon Marlow, Simon Peyton Jones, and David Maz4
ières. 2012. Safe haskell. In Proceedings of the 2012 Haskell Symposium
(Haskell '12), 2012. Association for Computing Machinery, Copen4
hagen, Denmark, 137–148. 10.1145/2364506.2364524

[35] William Wulf, Ellis Cohen, William Corwin, Anita Jones, Roy Levin,
Charles Pierson, and Fred Pollack. 1974. HYDRA: the kernel of a
multiprocessor operating system. Communications of the ACM 17, 6
(June 1974), 337–345. 10.1145/355616.364017

[36] Zephyr Project. Zephyr OS. Retrieved August 31, 2025 from https://
www.zephyrproject.org/

https://doi.org/10.1145/319151.319163
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://doi.org/10.1145/2364506.2364524
https://doi.org/10.1145/355616.364017
https://www.zephyrproject.org/
https://www.zephyrproject.org/

	Abstract
	Introduction
	Tock's Original Design
	Interior Mutability
	Extending the Kernel With Capsules
	Hardware-Isolated Userspace Processes
	Dependability with a Heapless Kernel and Grants
	Asynchronous All the Way Down

	Evolution
	Hardware Root of Trust
	Complexity of Asynchronous Code
	Rust in Userspace and Tock v2.0
	Respecting Ownership
	Swapping Semantics
	Tock v2.0

	Process Loading
	External Dependencies

	Discovered Rust Opportunities
	Enforcing Correct Composition
	Buffer Management
	Memory-Mapped I/O Abstractions
	Privileged APIs with Capabilities

	Discovered Rust Pitfalls
	Rust's Memory Model for an OS
	Mutably Aliased Application Memory
	Violating Rust's Type Invariants
	Emphasis on the unsafe Boundary

	Lack of unsafe Guidance
	Using External Software Libraries
	Verification Still Useful

	Supporting an Open Source Ecosystem from Academia
	Challenges of Academic Open-Source
	Benefits of Academic Open-Source

	Conclusion
	Acknowledgements
	References

