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We’re coming from the world of very limited computing

Resource-constrained embedded systems
● Sensor deployments
● Localization systems
● Internet of Things devices

Microcontroller-based systems
● Cortex-M class systems

○ 48 MHz
○ 64 kB RAM
○ 512 kB Flash
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Design paradigm: separate microcontrollers for each task
● Multiple microcontrollers on a single circuit board
● Sensing and communication tasks
● Avoids complex interactions altogether

Embedded OSes will need to support this paradigm with new primitives
● Inter-microcontroller communication
● Task migration
● Platform management

Embedded systems are embracing multi-microcontroller solutions
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Outline

● System design story

● Necessary OS primitives

● Where we are today
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The design of a multi-microcontroller system
Powerblade
● Plug-load power meter
● 1” x 1” x 1/16” form factor (US plug size)
● Measures current and voltage in real time
● Transmits data over BLE
● Limited power budget

Two microcontrollers
● MSP430 - Analog sampling
● nRF51822 - BLE communications
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Step one: a proof of concept
Does it work at all?

Just throw an MSP430 on there because 
we’re familiar with it.
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Step two: make a deployable system
Make it the right size

Make it wireless
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MSP430 is already a maximum capacity
● Radio peripheral could mess up sampling timing
● Radio ICs are a lot harder to use than modules anyways

Could rewrite sampling code on new microcontroller
● Probably powerful enough to do both
● Requires a lot of engineering to port

○ Especially to make it reliable

And now a second microcontroller gets added

Adding wireless leads to a second MCU
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Need to shuttle messages back and forth
● Sensor readings
● Get version number
● Clear cumulative energy value

Make a state machine on both sides
● Pull apart bytes
● Decide actions
● Perform response
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Inter-microcontroller communication gets complicated



Step three: add more features
Automatic device configuration
● Time to revise both state machines

Over-the-air firmware updates
● There are libraries to do this for the nRF microcontroller
● But how do we get updates to the MSP430?

Watchdogs
● How should the MSP430 tell if the nRF has crashed?

Each of these end up being custom software
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There are many twists to this same story
Polypoint/TotTag
● Localization hardware
● One microcontroller for wireless communications (BLE)
● One microcontroller for ultra wideband localization
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There are many twists to this same story
Signpost
● City-scale sensing platform
● One microcontroller for each application
● Additional microcontrollers for services
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There are many twists to this same story
Azure Sphere
● Secure, reliable Internet of Things
● Microcontroller for managing security
● Microcontroller for networking
● Two application processors

○ General purpose
○ Hard real-time needs

● Most may have access to shared
memory, which makes it more traditional

 

13



Embedded OSes should support these designs

What are the primitives that can do so?
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1) Enable microcontrollers to communicate
Communication has different requirements from normal distributed case
● Topology of the system is set at design time
● Reliability of the channel and processors is very high (but never perfect)
● Energy cost for communication is important

What is the right abstraction?
● Shared memory won’t work here
● A common interface is send_msg()

○ But doesn’t solve state machine problem
● Single microcontroller systems just use function calls

○ Has implications for OS runtime
○ Results in callable run-to-completion tasks, possibly in parallel with a main thread
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2) Enable migration of tasks
Some embedded tasks are tightly coupled with their microcontroller
● Real-time access to external signals
● Energy-constrained operations need microcontrollers to sleep

But there are other classes of tasks
● Data processing and filtering
● Control algorithms
● Machine learning

Even compile-time migration would be valuable
● But at run time allows adaptation to deployment conditions
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3) Provide system management tools
Firmware updates are hugely important
● But often only one microcontroller is connected to the network
● Need to ship updates to other microcontrollers on the system

○ Another task for the inter-microcontroller communication bus

Watchdog functionality too
● Multiple microcontrollers mean multiple points of failure
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Danger: distributed systems aren’t known for their simplicity

Need to ensure we don’t make challenges harder
● Messages have latency and priority that should be obvious
● Task migration is complicated by hardware peripherals
● System management could mean one compromised chip takes down the 

whole system

The goal was to make application design easier
● But distributed challenges could be more difficult than monolithic ones
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OS support today is limited



Tock enables compile-time task independence
Tock
● Allows for kernel-agnostic applications
● The same code can be reused on many different platforms
● Calls across kernel boundaries

could be a natural point where
external communication occurs
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CoMOS explores runtime task migration
CoMOS and mPlatform
● Microcontrollers: 4x MSP430, 1x ARM7
● Sound source localization application

Moves an FFT task between microcontrollers 
depending on latency requirements
● Improves energy efficiency
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Are these OS primitives or libraries?
Libraries could (and do) implement some of these needs
● Firmware updates
● Communication protocols
● Serialization and RPC libraries

OS support would allow better abstractions
● The inter-microcontroller bus is a resource to be managed

○ With latencies and priorities
● Making some tasks hardware independent is also an OS job
● Libraries would be a good start though!
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Conclusion: embedded OSes need to support 
multi-microcontroller systems

● Real-world embedded systems are adopting multi-microcontroller designs to 
reduce complex interactions

● Today leads to increased development needs to handle interactions

● We see a need for embedded OSes to provide better support
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Embedded OS support in general is lacking
Embedded, resource-constrained OSes are still very limited
● TinyOS, Contiki, FreeRTOS, etc.
● Lots of bare metal programming

Not so much beyond POSIX as haven’t reached it yet...
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Embedded systems abstractions need to be different
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General distributed systems are often about capability
● Make multiple computer looks like one more powerful computer
● Abstractions make the boundaries disappear whenever possible

Embedded systems need opaque abstractions
● Make the challenging parts appear seamless
● Keep the ramifications of actions apparent to the programmer

Sounds great, but how do we do this?



Questions to lead the audience with

● Implemented by the OS or a library?
● When do distributed systems become harder challenges than monolithic 

ones?
●
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