
Embedded OSes Must Embrace
Distributed Computing

Branden Ghena Jean-Luc Watson Prabal Dutta
brghena@berkeley.edu jeanluc.watson@berkeley.edu prabal@berkeley.edu

Next-Generation Operating Systems for Cyber-Physical Systems 2019



We’re coming from the world of very limited computing

Resource-constrained embedded systems
● Sensor deployments
● Localization systems
● Internet of Things devices

Microcontroller-based systems
● Cortex-M class systems

○ 48 MHz
○ 64 kB RAM
○ 512 kB Flash

2



Design paradigm: separate microcontrollers for each task
● Multiple microcontrollers on a single circuit board
● Sensing and communication tasks
● Avoids complex interactions altogether

Embedded OSes will need to support this paradigm with new primitives
● Inter-microcontroller communication
● Task migration
● Platform management

Embedded systems are embracing multi-microcontroller solutions

3



Outline

● System design story

● Necessary OS primitives

● Where we are today

4



The design of a multi-microcontroller system
Powerblade
● Plug-load power meter
● 1” x 1” x 1/16” form factor (US plug size)
● Measures current and voltage in real time
● Transmits data over BLE
● Limited power budget

Two microcontrollers
● MSP430 - Analog sampling
● nRF51822 - BLE communications

5



Step one: a proof of concept
Does it work at all?

Just throw an MSP430 on there because 
we’re familiar with it.

6



Step two: make a deployable system
Make it the right size

Make it wireless

7



MSP430 is already a maximum capacity
● Radio peripheral could mess up sampling timing
● Radio ICs are a lot harder to use than modules anyways

Could rewrite sampling code on new microcontroller
● Probably powerful enough to do both
● Requires a lot of engineering to port

○ Especially to make it reliable

And now a second microcontroller gets added

Adding wireless leads to a second MCU

8



Need to shuttle messages back and forth
● Sensor readings
● Get version number
● Clear cumulative energy value

Make a state machine on both sides
● Pull apart bytes
● Decide actions
● Perform response

9

Inter-microcontroller communication gets complicated



Step three: add more features
Automatic device configuration
● Time to revise both state machines

Over-the-air firmware updates
● There are libraries to do this for the nRF microcontroller
● But how do we get updates to the MSP430?

Watchdogs
● How should the MSP430 tell if the nRF has crashed?

Each of these end up being custom software

10



There are many twists to this same story
Polypoint/TotTag
● Localization hardware
● One microcontroller for wireless communications (BLE)
● One microcontroller for ultra wideband localization

 

11



There are many twists to this same story
Signpost
● City-scale sensing platform
● One microcontroller for each application
● Additional microcontrollers for services

 

12



There are many twists to this same story
Azure Sphere
● Secure, reliable Internet of Things
● Microcontroller for managing security
● Microcontroller for networking
● Two application processors

○ General purpose
○ Hard real-time needs

● Most may have access to shared
memory, which makes it more traditional

 

13



Embedded OSes should support these designs

What are the primitives that can do so?

14



1) Enable microcontrollers to communicate
Communication has different requirements from normal distributed case
● Topology of the system is set at design time
● Reliability of the channel and processors is very high (but never perfect)
● Energy cost for communication is important

What is the right abstraction?
● Shared memory won’t work here
● A common interface is send_msg()

○ But doesn’t solve state machine problem
● Single microcontroller systems just use function calls

○ Has implications for OS runtime
○ Results in callable run-to-completion tasks, possibly in parallel with a main thread

15



2) Enable migration of tasks
Some embedded tasks are tightly coupled with their microcontroller
● Real-time access to external signals
● Energy-constrained operations need microcontrollers to sleep

But there are other classes of tasks
● Data processing and filtering
● Control algorithms
● Machine learning

Even compile-time migration would be valuable
● But at run time allows adaptation to deployment conditions

16



3) Provide system management tools
Firmware updates are hugely important
● But often only one microcontroller is connected to the network
● Need to ship updates to other microcontrollers on the system

○ Another task for the inter-microcontroller communication bus

Watchdog functionality too
● Multiple microcontrollers mean multiple points of failure

17



Danger: distributed systems aren’t known for their simplicity

Need to ensure we don’t make challenges harder
● Messages have latency and priority that should be obvious
● Task migration is complicated by hardware peripherals
● System management could mean one compromised chip takes down the 

whole system

The goal was to make application design easier
● But distributed challenges could be more difficult than monolithic ones

18



19

OS support today is limited



Tock enables compile-time task independence
Tock
● Allows for kernel-agnostic applications
● The same code can be reused on many different platforms
● Calls across kernel boundaries

could be a natural point where
external communication occurs

20



CoMOS explores runtime task migration
CoMOS and mPlatform
● Microcontrollers: 4x MSP430, 1x ARM7
● Sound source localization application

Moves an FFT task between microcontrollers 
depending on latency requirements
● Improves energy efficiency

21



Are these OS primitives or libraries?
Libraries could (and do) implement some of these needs
● Firmware updates
● Communication protocols
● Serialization and RPC libraries

OS support would allow better abstractions
● The inter-microcontroller bus is a resource to be managed

○ With latencies and priorities
● Making some tasks hardware independent is also an OS job
● Libraries would be a good start though!

22



Conclusion: embedded OSes need to support 
multi-microcontroller systems

● Real-world embedded systems are adopting multi-microcontroller designs to 
reduce complex interactions

● Today leads to increased development needs to handle interactions

● We see a need for embedded OSes to provide better support

23



Embedded OSes Must Embrace
Distributed Computing

Branden Ghena Jean-Luc Watson Prabal Dutta
brghena@berkeley.edu jeanluc.watson@berkeley.edu prabal@berkeley.edu

Lab11.eecs.berkeley.edu --- github.com/lab11

Next-Generation Operating Systems for Cyber-Physical Systems 2019



Embedded OS support in general is lacking
Embedded, resource-constrained OSes are still very limited
● TinyOS, Contiki, FreeRTOS, etc.
● Lots of bare metal programming

Not so much beyond POSIX as haven’t reached it yet...

25



Embedded systems abstractions need to be different

26

General distributed systems are often about capability
● Make multiple computer looks like one more powerful computer
● Abstractions make the boundaries disappear whenever possible

Embedded systems need opaque abstractions
● Make the challenging parts appear seamless
● Keep the ramifications of actions apparent to the programmer

Sounds great, but how do we do this?



Questions to lead the audience with

● Implemented by the OS or a library?
● When do distributed systems become harder challenges than monolithic 

ones?
●

27


