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Chapter 9: Memory Architectures




Homework Announcement

Homework 1 is available on bcourses

It's due in one week on Thursday 9/6 at 11:59 PM

Remember
Homework is 15% of your final grade
And the best 6 out of the 7 homeworks are counted
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Outline

o Memory Hierarchy
Types of memory

o Using Memory
Caches

Memory Maps
Memory-mapped I/O

o Lab Hardware
NRF52832 example

o Software Organization of Memory
Stacks & Heaps
Code examples
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MEMORY HIERARCHIES
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Memory Hierarchy

o Memories on a system can be arranged as a pyramid
Top is the most frequently used memory
Bottom is the least frequently used

o Let's draw the hierarchy pyramid

o What are the capabilities and constraints as you move up
and down the hierarchy?

o How do we implement each of these categories?
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Standard

Req
Model cgisters
Cache
Primary Storage

/ Secondary Storage \
/ Tertiary Storage \
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Personal
Computers

Registers

LO Cache

L1 Cache

L2 Cache

L3 Cache

L4 Cache

DRAM
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Microcontrollers Registers
Cache

SRAM

Flash
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Memory Classes

Two major types
Memory which Is temporary

Memory which Iis permanent
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Volatile Memory
Loses contents when power is off.
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Volatile Memory
Loses contents when power is off.

- Mercury Delay Line

18-bit memory for UNIVAC
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Volatile Memory
Loses contents when power is off.

SRAM: static random-access memory
Fast, deterministic access time

But more power hungry and less dense than DRAM
Used for registers, caches, and small embedded memories

DRAM: dynamic random-access memory
Slower than SRAM

Access time depends on the sequence of addresses
Denser than SRAM (higher capacity)

Requires periodic refresh (typically every 64 milliseconds)
Typically used for main memory
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Non-Volatile Memory
Preserves contents when power is off

EPROM: erasable programmable read only memory
Invented by Dov Frohman of Intel in 1971
Erase by exposing the chip to strong UV light

EEPROM: electrically erasable programmable read-only memory
Invented by George Perlegos at Intel in 1978
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Non-Volatile Memory
Preserves contents when power is off

- Flash memory
Invented by Dr. Fujio Masuoka at Toshiba around 1980
Erased a “block” at a time
Limited number of program/erase cycles (~100,000)
Controllers can get quite complex

. Disk drives

Not as well suited for
embedded systems

SSD PCB
X3

SATA
Interface

NAND Flash Memory
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Example:

Die of a
STM32F103VGT6
ARM Cortex-M3
microcontroller with
1 megabyte flash
memory by
STMicroelectronics.

Which part Is the Image from Wikimedia Commons
memory?
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Example:

Die of a
STM32F103VGT6
ARM Cortex-M3
microcontroller with
1 megabyte flash
memory by
STMicroelectronics.

Which part Is the Image from Wikimedia Commons

t?
memory: Just about everything but

the bottom right corner
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USING MEMORY
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Registers

o How do we read or write to registers?
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Registers

o How do we read or write to registers?
Most assembly instructions!

MOV <Destination Register>, <Source Register>
MOV <Destination Register>, #i<Literal>

ADD <Destination Register>, <Source 1>, <Source 2>

Registers don’t have memory addresses
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Caches

o How do we read or write to a cache?
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Caches

o How do we read or write to a cache?
o You don’t! Caches are automatic.

Personal Computer
Example

registers

SRAM DRAM

EECS 149/249A, UC Berkeley: 22



. 1 valid bit  rtag bits B = 2% bytes per block
Direct-Mapped et
et Valid Tag Block
Cache
A “set” consists of one “line”
v
» Set 1 Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset -
-1 )
" Address !
If the tag of the address Set g| | Valid Tag Block
matches the tag of the line, then
we have a “cache hit.”
Otherwise, the fetch goes to
main memory, updating the line. CACHE
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.. 1 valid bit  rtag bits B = 2% bytes per block
Set-Associative
CaChe Valid Tag Block
Set0
A “set” consists of Valid Tag Block
several “lines”
v
Valid Tag Block
» Set 1
Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset -
-1 )
" Address !
Tag matching is done using an Valid Tag Block
“associative memory” or Set S
“content-addressable memory.” Valid Tag Block
CACHE
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.. 1 valid bit  rtag bits B = 2% bytes per block
Set-Associative
CaChe Valid Tag Block
Set 0
A “set” consists of Valid Tag Block
several “lines”
v
Valid Tag Block
» Set 1
Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset -
-1 0 )
" Address
A “cache miss” requires a Valid Tag Block
replacement policy (like Set S
LRU or FIFO). Valid Tag Block
What are the drawbacks of a
set-associative cache? CACHE
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.. 1 valid bit  rtag bits B = 2% bytes per block
Set-Associative
CaChe Valid Tag Block
Set 0 =t
A “set” consists of Valid Tag Block
several “lines”
v
Valid Tag Block
» Set 1
Valid Tag Block
t bits s bits b bits
Tag Set index | Block offset -
-1 )
" Address !
A “cache miss” requires a Valid Tag Block
replacement policy (like Set S -
LRU or FIFO). Valid Tag Block

What are the drawbacks of a You have to search
set-associative cache? through each tag to CACHE

check for your data EECS 149/249A, UC Berkeley: 26



Caches in Embedded Systems

Why do embedded systems avoid using caches?
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Caches in Embedded Systems

Why do embedded systems avoid using caches?

Caches improve performance, but making timing
unreliable (could be faster or slower in any given case)
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A Fact About the 20™ Century Notion of Computing:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, Esterel, etc. has nothing to do with how long it
takes to do anything. Nearly all our computation and
networking abstractions are built on this premise.

Caches improve performance for a
fixed cost, at the expense of making
it very difficult to control timing.
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Main Memory (and further)

o RAM and Disk are accessed through reads and writes to
addresses

o Which addresses are valid and point to which thing depend
on the memory “map” of the system
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Memory Map
of an ARM

Cortex - M3
architecture

Defines the
mapping of
addresses to
physical memory.

Why do this?

Note that this does
not define how
much physical
memory there is!

B

peripherals

private peripheral bus

external devices
(memory mapped)

data memory
(DRAM)

peripherals
(memory-mapped registers)

data memory
(SRAM)

program memory
(flash)

OXFFFEFFFFF

O0xE0000000
OxXDFFFFFFF

O0xA0000000 }
OX9FFFFFFF

0x60000000 }
OX5FFFFFFF}

0x40000000
O0x3FFFFFFF

0x20000000
Ox1FFFFFFEF

0x00000000

0.5GB

1.0GB

1.0GB

05GB 05GB 0.5GB



Main Memory on Personal Computers

o Applications on personal computers don't see a
memory map like the Cortex-M3 one

Why not?
What does their memory look like?

o How this is implemented quickly and securely are
major topics of Operating Systems and Computer
Architecture

EECS 149/249A, UC Berkeley: 32



Main Memory on Personal Computers

o Applications on personal computers don't see a
memory map like the Cortex-M3 one

Why not?
What does their memory look like?

Applications are provided virtual memory spaces, where it
appears as if they own all addresses and start at address 0.
This makes them easier to create and more secure.

o How this is implemented quickly and securely are
major topics of Operating Systems and Computer
Architecture
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Things That Aren’t Memory

o Microcontrollers have a lot of peripherals
General Purpose 1/0 (GPIO) pins
Analog to Digital Converters
Digital to Analog Converters
Pulse-Width Modulation Generators
Timers
Various communication buses: UART, SPI, 12C

o How do they access the peripherals?

o Why not create special assembly functions to access them?
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Things That Aren’t Memory

o Microcontrollers have a lot of peripherals
General Purpose 1/0 (GPIO) pins
Analog to Digital Converters
Digital to Analog Converters
Pulse-Width Modulation Generators
Timers
Various communication buses: UART, SPI, 12C

o How do they access the peripherals?
With memory reads and writes

o Why not create special assembly functions to access them?

That would make the processor harder to design. In
the memory-mapped case, one processor can use
an arbitrary selection of peripherals and doesn't
have to know anything about them.
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Example: Random Number Generator

Example RNG peripheral from the nRF52832

Interface:

START —»
STOP —»

Random number
generator

—» VALRDY
—» VALUE
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Example: Random Number Generator

26.3 Registers

Table 45: Instances

Base address Peripheral Instance Description Configuration
0x4000D000 RNG RNG Random Number Generator

Table 46: Register Overview

Register Offset Description

TASKS_START 0x000 Task starting the random number generator

TASKS_STOP 0x004 Task stopping the random number generator

EVENTS_VALRDY 0x100 Event being generated for every new random number written to the VALUE register
SHORTS 0x200 Shortcut register

INTENSET 0x304 Enable interrupt

INTENCLR 0x308 Disable interrupt

CONFIG 0x504 Configuration register

VALUE 0x508 Output random number

EECS 149/249A, UC Berkeley: 37



Example: Random Number Generator

How do we access these

26.3 Registers _
. registers from C code?

Table 45: Instances

Base address Peripheral Instance Description Configuration
0x4000D000 RNG RNG Random Number Generator

Table 46: Register Overview

Register Offset Description

TASKS_START 0x000 Task starting the random number generator

TASKS_STOP 0x004 Task stopping the random number generator

EVENTS_VALRDY 0x100 Event being generated for every new random number written to the VALUE register
SHORTS 0x200 Shortcut register

INTENSET 0x304 Enable interrupt

INTENCLR 0x308 Disable interrupt

CONFIG 0x504 Configuration register

VALUE 0x508 Output random number
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Example: Random Number Generator

How do we access these
registers from C code?

By reading and writing the raw address.
e Peripharal — (Although we usually create structures at
T o oA that address to make things more clear)

26.3 Registers

Table 45: Instances

Table 46: Register Overview

Register Offset Description

TASKS_START 0x000 Task starting the random number generator

TASKS _STOP 0x004 Task stopping the random number generator

EVENTS_VALRDY 0x100 Event being generated for every new random number written to the VALUE register
SHORTS 0x200 Shortcut register

INTENSET 0x304 Enable interrupt

INTENCLR 0x308 Disable interrupt

CONFIG 0x504 Configuration register

VALUE 0x508 Output random number
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Example: Random Number Generator

26.3 Registers

Table 45: Instances

Base address Peripheral
0x4000D000 RNG

Table 46: Register Overview

Register Offset
TASKS_START 0x000
TASKS_STOP 0x004
EVENTS_VALRDY 0x100
SHORTS 0x200
INTENSET 0x304
INTENCLR 0x308
CONFIG 0x504
VALUE 0x508
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Example: Random Number Generator

26.3.5 VALUE
Address offset: 0x508

Output random number

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O

AAAAAAAA
0O 000O0O0O0ODOOOOOOOOOOOOOOOOOOOOOOOOD
Value Description

[0..255] Generated random number

_random_value_get(void)

8_t)(NRF_RNG->VALUE & RNG_VALUE_VALUE_Msk);

>
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Example: Random Number Generator

26.3.5 VALUE
Address offset: 0x508

Output random number

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O

AAAAAAAA
0O 000O0O0O0ODOOOOOOOOOOOOOOOOOOOOOOOOD
Value Description

[0..255] Generated random number

_random_value_get(void)

8_t)(NRF_RNG->VALUE & RNG_VALUE_VALUE_Msk);

>
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Example: Random Number Generator

Remember: at the very bottom these are still just
memory reads and writes!

uint32 t value = NRF_RNG->Value;

Is equivalent to

uint32 t value = *(uint32_t*)(0x4000D508);

EECS 149/249A, UC Berkeley: 43



LAB HARDWARE
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Memory Map

nRF52832 Address Map - Cortex M4 System Address Map nRF52832 Address Map
0xE010 0000
i ROM Table System
oxE004 s External PPB
OXEOO4 165 ETM Private Peripheral Bus - External
X : : N
L G TPIU Private Peripheral Bus - Internal
0xE004 0000 Reserved j 0x6000 0000
0xE000 FOOO —
0XE000 E000 External device 1.0GB Reserved
Reserved
0xE000 3000 =
AHB peripherals
0xE000 2000 DWT perip 0x5000 0000
0xE000 1000 ™ /" 0xA000 0000 Reserved
0xE000 0000 j
G006 — APB peripherals
TR External RAM ~ 1.0GB | / : 0x4000 0000
0x1000 1000
Reserved
0x1000 0000 FICR
Reserved _ 0x4000 0000
0x0081 0000 Peripheral 0.5GB
Code RAM
0x0080 0000 Reserved
Reserved SRAM 0.5GB
0x0008 0000 3 0x2001 0000
Data RAM
fkash Code 0.5GB 0x2000 0000
0x0000 0000
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NRF52832 Block Diagram

RAMo, RAM; RAM: RAM; RAM, RAMs RAMs RAM; GPIO
//\\ //'\\ //\\ //\\ //\\ //\\ //\\ //\\ //\\
(] o [) () o [} o ] (0]
= e e @ k 3 3 3 a
=2 = = o ) 7} 7} 7} )
N FT TR T R EE T T T A . T A Vil
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2| |¢g
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g © 7} 7}
E w
I-Cache
CPU AHB TO APB Flash
BRIDGE
ARM
CORTEX-M4

\

To Peripherals
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| Why have 8 separate
nRF52832 Block Diagram RAM banks?

RAM, RAM; RAM; RAM; RAM,4 RAMs RAMg RAM; GPIO
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| Why have 8 separate
nRF52832 Block Diagram RAM banks?

So that extraneous RAM

i e - - can be turned off to save
0 1 2 3 RAM RAM
) ° power.
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\

To Peripherals
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NRF52832 Block Diagram  Why is GPIO special?

RAM, RAM; RAM; RAM; RAM,4 RAMs RAMs RAM; GPIO
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NRF52832 Block Diagram  Why is GPIO special?

Because we want to be able to
respond to simple external events

RAMg RAM; RAM; RAM; RAM .
) very quickly.
//\\ //\\ A /\\ . /\\ //\\ //\\ //\\ //\\ //\\
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To Peripherals
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SOFTWARE USE OF MEMORY
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Memory Organization for Programs

Statically-allocated memory

Compiler chooses the address at which to store a
variable.

Stack

Dynamically allocated memory with a Last-in, First-out
(LIFO) strategy

Heap
Dynamically allocated memory
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Statically-Allocated Memory in C

char x;
volid foo (void) {
X = 0x20;

Compiler chooses what address to use for x, and the variable
IS accessible across procedures. The variable’s lifetime is the
total duration of the program execution.

EECS 149/249A, UC Berkeley: 54



Statically-Allocated Memory with Limited Scope

volid foo (void) {
static char y;
y = 0x20;

Compiler chooses what address to use for y, but the variable
IS meant to be accessible only in foo(). The variable’s lifetime
IS the total duration of the program execution (values persist

across calls to foo()).

EECS 149/249A, UC Berkeley: 55



Statically-Allocated Memory with Limited Scope

char x; vold foo(void) {
voilid foo(void) { static char y;
x = 0x20; y = 0x20;

What is the difference between x and y when code is loaded
on the device?
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Statically-Allocated Memory with Limited Scope

char x; vold foo(void) {

voilid foo(void) { static char y;
x = 0x20; y = 0x20;

} }

What is the difference between x and y when code is loaded

on the device?
There is no difference! Accessibility of a variable is a

compile-time concept, not a run-time one.
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Variables on the Stack
("fautomatic variables™)

volid foo(void) {
char x;
x = 0x20;

When the procedure is called, x is assigned an address on the
stack (by decrementing the stack pointer). When the
procedure returns, the memory is freed (by incrementing the
stack pointer). The variable persists only for the duration of

the call to foo().
EECS 149/249A, UC Berkeley: 58



Assume a 32-bit

Memory Layout Question 1 ARM microcontroller

Memory

char Xx;

. . Stack
void foo(void) {

X = 0X20;

B Heap
}
How many bytes does x take, (SDt::?c)
and in which section of the memory layout?
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Assume a 32-bit

Memory Layout Question 1 ARM microcontroller

Memory
char Xx;
. . Stack
void foo(void) {
X = 0X20;
Heap
}
How many bytes does x take, (SDt::?c)
and in which section of the memory layout?

1 byte in the data section
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Assume a 32-bit

Memory Layout Question 2 ARM microcontroller

Memory
char* x;
. . Stack
void foo(void) {
X = 0X20;
Heap
}
How many bytes does x take, (SDt::?c)
and in which section of the memory layout?

4 bytes in the data section
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Assume a 32-bit

Memory Layout Question 3\ o1 it controller

Memory
int a;
. Stack
void foo(short b) {
static int ¢ = 3;
char* d; Heap
d = (char*) malloc(4);
printf(“Hello EECS149\n”);
Data
} (Qéatic)
a — 4 bytes in the data section

b — 2 bytes in the stack
What abOUt d, ba op and d? c — 4 bytes in the data section
d — 4 bytes in the stack
contents of d — 4 bytes in the heap
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Find the flaw in this program

(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {
int z;
z =y * X
return &z;

}

int main (void) {

int* result = foo (10);

EECS 149/249A, UC Berkeley: 63



Solution: Find the flaw in this program

statically allocated: compiler assigns a memory location.
arguments on the stack

int z; automatic variables on the stack
* X,’

return &z;

int main (void)
int* result £f00 (10) ; program counter, argument 10,
and z go on the stack (and

possibly more, depending on the
} compiler).

The procedure foo() returns a pointer to a variable
on the stack. What if another procedure call (or
interrupt) occurs before the returned pointer is
de-referenced?
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The embedded systems perspective

EECS 149/249A, UC Berkeley: 65



The embedded systems perspective

The Heap is EVIL!!

Why?

EECS 149/249A, UC Berkeley: 66



Dynamically-Allocated Memory
The Heap

An operating system typically offers a way to dynamically
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many
problems with embedded systems:

o Memory leaks (allocated memory is never freed)
o Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection™) often require
stopping everything and reorganizing the allocated memory.
This is deadly for real-time programs.
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The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?
Stack

\

Data
(Static)
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The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?
Stack

\

Data
(Static)

Nothing stops it!
Hopefully the failure is easy to understand...
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Conclusion

Understanding memory architectures is essential to
programming embedded systems.
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