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Homework Announcement

Homework 1 is available on bcourses

It’s due in one week on Thursday 9/6 at 11:59 PM

Remember
Homework is 15% of your final grade
And the best 6 out of the 7 homeworks are counted
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Outline

¢ Memory Hierarchy
¢ Types of memory

¢ Using Memory
¢ Caches
¢ Memory Maps
¢ Memory-mapped I/O

¢ Lab Hardware
¢ nRF52832 example

¢ Software Organization of Memory
¢ Stacks & Heaps
¢ Code examples
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MEMORY HIERARCHIES



EECS 149/249A, UC Berkeley: 6

Memory Hierarchy

¢ Memories on a system can be arranged as a pyramid
¢ Top is the most frequently used memory
¢ Bottom is the least frequently used

¢ Let’s draw the hierarchy pyramid

¢ What are the capabilities and constraints as you move up 
and down the hierarchy?

¢ How do we implement each of these categories?
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Registers

Cache

Primary Storage

Secondary Storage

Tertiary Storage

Standard
Model Faster

Less Storage
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Registers

L0 Cache
L1 Cache
L2 Cache
L3 Cache
L4 Cache

DRAM

Disk (HDD or SSD)

Internet

Personal
Computers
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Registers

Cache

SRAM

Flash

Microcontrollers
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Memory Classes

Two major types

1. Memory which is temporary

2. Memory which is permanent
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Volatile Memory
Loses contents when power is off.
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Volatile Memory

Loses contents when power is off.

• Mercury Delay Line

• 18-bit memory for UNIVAC
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Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory
• Fast, deterministic access time

• But more power hungry and less dense than DRAM

• Used for registers, caches, and small embedded memories

• DRAM: dynamic random-access memory
• Slower than SRAM

• Access time depends on the sequence of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh (typically every 64 milliseconds)

• Typically used for main memory
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Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory
• Invented by Dov Frohman of Intel in 1971
• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory
• Invented by George Perlegos at Intel in 1978

Image from the Wikimedia Commons
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Non-Volatile Memory
Preserves contents when power is off

• Flash memory
• Invented by Dr. Fujio Masuoka at Toshiba around 1980
• Erased a “block” at a time
• Limited number of program/erase cycles (~100,000)
• Controllers can get quite complex

• Disk drives
• Not as well suited for

embedded systems
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Example: 

Die of a 
STM32F103VGT6 
ARM Cortex-M3 
microcontroller with 
1 megabyte flash 
memory by 
STMicroelectronics.

Which part is the
memory?

Image from Wikimedia Commons
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Example: 

Die of a 

STM32F103VGT6 

ARM Cortex-M3 

microcontroller with 

1 megabyte flash 

memory by 

STMicroelectronics.

Which part is the

memory?

Image from Wikimedia Commons

Just about everything but 

the bottom right corner
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USING MEMORY



EECS 149/249A, UC Berkeley: 19

Registers

¢ How do we read or write to registers?
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Registers

¢ How do we read or write to registers?
¢ Most assembly instructions!

MOV <Destination Register>, <Source Register>
MOV <Destination Register>, #<Literal>

ADD <Destination Register>, <Source 1>, <Source 2>

Registers don’t have memory addresses
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Caches

¢ How do we read or write to a cache?
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Caches

¢ How do we read or write to a cache?
¢ You don’t! Caches are automatic.

CPU

registers
Cache

SRAM DRAM

Main memory

Personal Computer
Example
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Direct-Mapped

Cache
Valid Tag Block

Valid Tag Block

Valid Tag Block

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then 

we have a “cache hit.” 

Otherwise, the fetch goes to 

main memory, updating the line.
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Set-Associative
Cache Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 
several “lines”

Tag matching is done using an 
“associative memory” or 
“content-addressable memory.”
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Set-Associative
Cache Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 
several “lines”

A “cache miss” requires a 
replacement policy (like 
LRU or FIFO).

What are the drawbacks of a
set-associative cache?
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Set-Associative
Cache Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 
several “lines”

A “cache miss” requires a 
replacement policy (like 
LRU or FIFO).

What are the drawbacks of a
set-associative cache?

You have to search 
through each tag to 
check for your data
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Caches in Embedded Systems

Why do embedded systems avoid using caches?
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Caches in Embedded Systems

Why do embedded systems avoid using caches?

Caches improve performance, but making timing 
unreliable (could be faster or slower in any given case)
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Main Memory (and further)

¢ RAM and Disk are accessed through reads and writes to 
addresses

¢ Which addresses are valid and point to which thing depend 
on the memory “map” of the system
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Memory Map 

of an ARM 

Cortex - M3 

architecture

Defines the 

mapping of 

addresses to 

physical memory.

Why do this?

Note that this does 

not define how 

much physical 

memory there is!
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Main Memory on Personal Computers

¢ Applications on personal computers don’t see a 
memory map like the Cortex-M3 one
¢ Why not?
¢ What does their memory look like?

¢ How this is implemented quickly and securely are
major topics of Operating Systems and Computer 
Architecture
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Main Memory on Personal Computers

¢ Applications on personal computers don’t see a 
memory map like the Cortex-M3 one
¢ Why not?
¢ What does their memory look like?

¢ How this is implemented quickly and securely are
major topics of Operating Systems and Computer 
Architecture

Applications are provided virtual memory spaces, where it 
appears as if they own all addresses and start at address 0.

This makes them easier to create and more secure.
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Things That Aren’t Memory

¢ Microcontrollers have a lot of peripherals
¢ General Purpose I/O (GPIO) pins
¢ Analog to Digital Converters
¢ Digital to Analog Converters
¢ Pulse-Width Modulation Generators
¢ Timers
¢ Various communication buses: UART, SPI, I2C

¢ How do they access the peripherals?

¢ Why not create special assembly functions to access them?
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Things That Aren’t Memory

¢ Microcontrollers have a lot of peripherals
¢ General Purpose I/O (GPIO) pins
¢ Analog to Digital Converters
¢ Digital to Analog Converters
¢ Pulse-Width Modulation Generators
¢ Timers
¢ Various communication buses: UART, SPI, I2C

¢ How do they access the peripherals?

¢ Why not create special assembly functions to access them?

With memory reads and writes

That would make the processor harder to design. In 
the memory-mapped case, one processor can use 

an arbitrary selection of peripherals and doesn’t 
have to know anything about them.
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Example: Random Number Generator

Example RNG peripheral from the nRF52832

Interface:
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Example: Random Number Generator
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Example: Random Number Generator

How do we access these 
registers from C code?
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Example: Random Number Generator

How do we access these 
registers from C code?
By reading and writing the raw address. 
(Although we usually create structures at 
that address to make things more clear)
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Example: Random Number Generator
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Example: Random Number Generator
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Example: Random Number Generator
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Example: Random Number Generator

Remember: at the very bottom these are still just 
memory reads and writes!

uint32_t value = NRF_RNG->Value;

Is equivalent to

uint32_t value = *(uint32_t*)(0x4000D508);
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LAB HARDWARE
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nRF52832 Microcontroller

Processor
• ARM Cortex-M4F
• 3-stage pipeline!
• Floating point support

Memory
• Instruction Cache

• Off by default

• 64 kB SRAM
• 512 kB Flash
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Memory Map
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nRF52832 Block Diagram

To Peripherals
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nRF52832 Block Diagram

To Peripherals

Why have 8 separate 
RAM banks?
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nRF52832 Block Diagram

To Peripherals

Why have 8 separate 
RAM banks?

So that extraneous RAM 
can be turned off to save 

power.
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nRF52832 Block Diagram

To Peripherals

Why is GPIO special?
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nRF52832 Block Diagram

To Peripherals

Why is GPIO special?

Because we want to be able to 
respond to simple external events 

very quickly.
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SOFTWARE USE OF MEMORY
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Memory Organization for Programs

• Statically-allocated memory
• Compiler chooses the address at which to store a 

variable.
• Stack

• Dynamically allocated memory with a Last-in, First-out 
(LIFO) strategy

• Heap
• Dynamically allocated memory
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Statically-Allocated Memory in C

char x;
void foo(void) {

x = 0x20;
…

}

Compiler chooses what address to use for x, and the variable 

is accessible across procedures. The variable’s lifetime is the 

total duration of the program execution.
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Statically-Allocated Memory with Limited Scope

void foo(void) {
static char y;
y = 0x20;
…

}

Compiler chooses what address to use for y, but the variable 
is meant to be accessible only in foo(). The variable’s lifetime 
is the total duration of the program execution (values persist 
across calls to foo()).
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Statically-Allocated Memory with Limited Scope

char x;
void foo(void) {

x = 0x20;
…

}

What is the difference between x and y when code is loaded 
on the device?

void foo(void) {
static char y;
y = 0x20;
…

}
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Statically-Allocated Memory with Limited Scope

char x;
void foo(void) {

x = 0x20;
…

}

What is the difference between x and y when code is loaded 
on the device?

void foo(void) {
static char y;
y = 0x20;
…

}

There is no difference! Accessibility of a variable is a 
compile-time concept, not a run-time one.
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Variables on the Stack
(“automatic variables”)

void foo(void) {
char x;
x = 0x20;
…

}

When the procedure is called, x is assigned an address on the 
stack (by decrementing the stack pointer). When the 
procedure returns, the memory is freed (by incrementing the 
stack pointer). The variable persists only for the duration of 
the call to foo().
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Memory Layout Question 1

char x;
void foo(void) {
x = 0x20;
…

}

How many bytes does x take,
and in which section of the memory layout?

Assume a 32-bit 
ARM microcontroller

Stack

Heap

Data
(Static)

Memory
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Memory Layout Question 1

char x;
void foo(void) {
x = 0x20;
…

}

How many bytes does x take,
and in which section of the memory layout?

Assume a 32-bit 
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

1 byte in the data section
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Memory Layout Question 2

char* x;
void foo(void) {
x = 0x20;
…

}

How many bytes does x take,
and in which section of the memory layout?

Assume a 32-bit 
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

4 bytes in the data section
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Memory Layout Question 3

int a;
void foo(short b) {

static int c = 3;
char* d;
d = (char*) malloc(4);
printf(“Hello EECS149\n”);

}

What about a, b, c, and d?

Assume a 32-bit 
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

a – 4 bytes in the data section
b – 2 bytes in the stack
c – 4 bytes in the data section
d – 4 bytes in the stack
contents of d – 4 bytes in the heap
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Find the flaw in this program 
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}
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Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10, 
and z go on the stack (and 
possibly more, depending on the 
compiler).

The procedure foo() returns a pointer to a variable 
on the stack. What if another procedure call (or 
interrupt) occurs before the returned pointer is 
de-referenced?
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The embedded systems perspective
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The embedded systems perspective

The Heap is EVIL!!!!

Why?
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Dynamically-Allocated Memory 
The Heap

An operating system typically offers a way to dynamically 
allocate memory on a �heap�.

Memory management (malloc() and free()) can lead to many 
problems with embedded systems:

¢ Memory leaks (allocated memory is never freed)

¢ Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (�garbage collection�) often require 
stopping everything and reorganizing the allocated memory. 
This is deadly for real-time programs.
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The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?
Stack

Data
(Static)
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The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?

Nothing stops it!
Hopefully the failure is easy to understand…

Stack

Data
(Static)



EECS 149/249A, UC Berkeley: 70

Conclusion

Understanding memory architectures is essential to 
programming embedded systems.


