
Introduction to
Embedded Systems

Chapter 9: Memory Architectures

Branden Ghena
UC Berkeley

EECS 149/249A

Fall 2018

Content by Prabal Dutta, Edward Lee, and others

© 2008-2017: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

EECS 149/249A, UC Berkeley: 2

Homework Announcement

Homework 1 is available on bcourses

It’s due in one week on Thursday 9/6 at 11:59 PM

Remember
Homework is 15% of your final grade
And the best 6 out of the 7 homeworks are counted

EECS 149/249A, UC Berkeley: 3

Outline

¢ Memory Hierarchy
¢ Types of memory

¢ Using Memory
¢ Caches
¢ Memory Maps
¢ Memory-mapped I/O

¢ Lab Hardware
¢ nRF52832 example

¢ Software Organization of Memory
¢ Stacks & Heaps
¢ Code examples

EECS 149/249A, UC Berkeley: 5

MEMORY HIERARCHIES

EECS 149/249A, UC Berkeley: 6

Memory Hierarchy

¢ Memories on a system can be arranged as a pyramid
¢ Top is the most frequently used memory
¢ Bottom is the least frequently used

¢ Let’s draw the hierarchy pyramid

¢ What are the capabilities and constraints as you move up
and down the hierarchy?

¢ How do we implement each of these categories?

EECS 149/249A, UC Berkeley: 7

Registers

Cache

Primary Storage

Secondary Storage

Tertiary Storage

Standard
Model Faster

Less Storage

EECS 149/249A, UC Berkeley: 8

Registers

L0 Cache
L1 Cache
L2 Cache
L3 Cache
L4 Cache

DRAM

Disk (HDD or SSD)

Internet

Personal
Computers

EECS 149/249A, UC Berkeley: 9

Registers

Cache

SRAM

Flash

Microcontrollers

EECS 149/249A, UC Berkeley: 10

Memory Classes

Two major types

1. Memory which is temporary

2. Memory which is permanent

EECS 149/249A, UC Berkeley: 11

Volatile Memory
Loses contents when power is off.

EECS 149/249A, UC Berkeley: 12

Volatile Memory

Loses contents when power is off.

• Mercury Delay Line

• 18-bit memory for UNIVAC

EECS 149/249A, UC Berkeley: 13

Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory
• Fast, deterministic access time

• But more power hungry and less dense than DRAM

• Used for registers, caches, and small embedded memories

• DRAM: dynamic random-access memory
• Slower than SRAM

• Access time depends on the sequence of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh (typically every 64 milliseconds)

• Typically used for main memory

EECS 149/249A, UC Berkeley: 14

Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory
• Invented by Dov Frohman of Intel in 1971
• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory
• Invented by George Perlegos at Intel in 1978

Image from the Wikimedia Commons

EECS 149/249A, UC Berkeley: 15

Non-Volatile Memory
Preserves contents when power is off

• Flash memory
• Invented by Dr. Fujio Masuoka at Toshiba around 1980
• Erased a “block” at a time
• Limited number of program/erase cycles (~100,000)
• Controllers can get quite complex

• Disk drives
• Not as well suited for

embedded systems

EECS 149/249A, UC Berkeley: 16

Example:

Die of a
STM32F103VGT6
ARM Cortex-M3
microcontroller with
1 megabyte flash
memory by
STMicroelectronics.

Which part is the
memory?

Image from Wikimedia Commons

EECS 149/249A, UC Berkeley: 17

Example:

Die of a

STM32F103VGT6

ARM Cortex-M3

microcontroller with

1 megabyte flash

memory by

STMicroelectronics.

Which part is the

memory?

Image from Wikimedia Commons

Just about everything but

the bottom right corner

EECS 149/249A, UC Berkeley: 18

USING MEMORY

EECS 149/249A, UC Berkeley: 19

Registers

¢ How do we read or write to registers?

EECS 149/249A, UC Berkeley: 20

Registers

¢ How do we read or write to registers?
¢ Most assembly instructions!

MOV <Destination Register>, <Source Register>
MOV <Destination Register>, #<Literal>

ADD <Destination Register>, <Source 1>, <Source 2>

Registers don’t have memory addresses

EECS 149/249A, UC Berkeley: 21

Caches

¢ How do we read or write to a cache?

EECS 149/249A, UC Berkeley: 22

Caches

¢ How do we read or write to a cache?
¢ You don’t! Caches are automatic.

CPU

registers
Cache

SRAM DRAM

Main memory

Personal Computer
Example

EECS 149/249A, UC Berkeley: 23

Direct-Mapped

Cache
Valid Tag Block

Valid Tag Block

Valid Tag Block

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then

we have a “cache hit.”

Otherwise, the fetch goes to

main memory, updating the line.

EECS 149/249A, UC Berkeley: 24

Set-Associative
Cache Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of
several “lines”

Tag matching is done using an
“associative memory” or
“content-addressable memory.”

EECS 149/249A, UC Berkeley: 25

Set-Associative
Cache Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of
several “lines”

A “cache miss” requires a
replacement policy (like
LRU or FIFO).

What are the drawbacks of a
set-associative cache?

EECS 149/249A, UC Berkeley: 26

Set-Associative
Cache Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of
several “lines”

A “cache miss” requires a
replacement policy (like
LRU or FIFO).

What are the drawbacks of a
set-associative cache?

You have to search
through each tag to
check for your data

EECS 149/249A, UC Berkeley: 27

Caches in Embedded Systems

Why do embedded systems avoid using caches?

EECS 149/249A, UC Berkeley: 28

Caches in Embedded Systems

Why do embedded systems avoid using caches?

Caches improve performance, but making timing
unreliable (could be faster or slower in any given case)

EECS 149/249A, UC Berkeley: 29

EECS 149/249A, UC Berkeley: 30

Main Memory (and further)

¢ RAM and Disk are accessed through reads and writes to
addresses

¢ Which addresses are valid and point to which thing depend
on the memory “map” of the system

EECS 149/249A, UC Berkeley: 31

Memory Map

of an ARM

Cortex - M3

architecture

Defines the

mapping of

addresses to

physical memory.

Why do this?

Note that this does

not define how

much physical

memory there is!

EECS 149/249A, UC Berkeley: 32

Main Memory on Personal Computers

¢ Applications on personal computers don’t see a
memory map like the Cortex-M3 one
¢ Why not?
¢ What does their memory look like?

¢ How this is implemented quickly and securely are
major topics of Operating Systems and Computer
Architecture

EECS 149/249A, UC Berkeley: 33

Main Memory on Personal Computers

¢ Applications on personal computers don’t see a
memory map like the Cortex-M3 one
¢ Why not?
¢ What does their memory look like?

¢ How this is implemented quickly and securely are
major topics of Operating Systems and Computer
Architecture

Applications are provided virtual memory spaces, where it
appears as if they own all addresses and start at address 0.

This makes them easier to create and more secure.

EECS 149/249A, UC Berkeley: 34

Things That Aren’t Memory

¢ Microcontrollers have a lot of peripherals
¢ General Purpose I/O (GPIO) pins
¢ Analog to Digital Converters
¢ Digital to Analog Converters
¢ Pulse-Width Modulation Generators
¢ Timers
¢ Various communication buses: UART, SPI, I2C

¢ How do they access the peripherals?

¢ Why not create special assembly functions to access them?

EECS 149/249A, UC Berkeley: 35

Things That Aren’t Memory

¢ Microcontrollers have a lot of peripherals
¢ General Purpose I/O (GPIO) pins
¢ Analog to Digital Converters
¢ Digital to Analog Converters
¢ Pulse-Width Modulation Generators
¢ Timers
¢ Various communication buses: UART, SPI, I2C

¢ How do they access the peripherals?

¢ Why not create special assembly functions to access them?

With memory reads and writes

That would make the processor harder to design. In
the memory-mapped case, one processor can use

an arbitrary selection of peripherals and doesn’t
have to know anything about them.

EECS 149/249A, UC Berkeley: 36

Example: Random Number Generator

Example RNG peripheral from the nRF52832

Interface:

EECS 149/249A, UC Berkeley: 37

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 38

Example: Random Number Generator

How do we access these
registers from C code?

EECS 149/249A, UC Berkeley: 39

Example: Random Number Generator

How do we access these
registers from C code?
By reading and writing the raw address.
(Although we usually create structures at
that address to make things more clear)

EECS 149/249A, UC Berkeley: 40

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 41

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 42

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 43

Example: Random Number Generator

Remember: at the very bottom these are still just
memory reads and writes!

uint32_t value = NRF_RNG->Value;

Is equivalent to

uint32_t value = *(uint32_t*)(0x4000D508);

EECS 149/249A, UC Berkeley: 44

LAB HARDWARE

EECS 149/249A, UC Berkeley: 45

nRF52832 Microcontroller

Processor
• ARM Cortex-M4F
• 3-stage pipeline!
• Floating point support

Memory
• Instruction Cache

• Off by default

• 64 kB SRAM
• 512 kB Flash

EECS 149/249A, UC Berkeley: 46

Memory Map

EECS 149/249A, UC Berkeley: 47

nRF52832 Block Diagram

To Peripherals

EECS 149/249A, UC Berkeley: 48

nRF52832 Block Diagram

To Peripherals

Why have 8 separate
RAM banks?

EECS 149/249A, UC Berkeley: 49

nRF52832 Block Diagram

To Peripherals

Why have 8 separate
RAM banks?

So that extraneous RAM
can be turned off to save

power.

EECS 149/249A, UC Berkeley: 50

nRF52832 Block Diagram

To Peripherals

Why is GPIO special?

EECS 149/249A, UC Berkeley: 51

nRF52832 Block Diagram

To Peripherals

Why is GPIO special?

Because we want to be able to
respond to simple external events

very quickly.

EECS 149/249A, UC Berkeley: 52

SOFTWARE USE OF MEMORY

EECS 149/249A, UC Berkeley: 53

Memory Organization for Programs

• Statically-allocated memory
• Compiler chooses the address at which to store a

variable.
• Stack

• Dynamically allocated memory with a Last-in, First-out
(LIFO) strategy

• Heap
• Dynamically allocated memory

EECS 149/249A, UC Berkeley: 54

Statically-Allocated Memory in C

char x;
void foo(void) {

x = 0x20;
…

}

Compiler chooses what address to use for x, and the variable

is accessible across procedures. The variable’s lifetime is the

total duration of the program execution.

EECS 149/249A, UC Berkeley: 55

Statically-Allocated Memory with Limited Scope

void foo(void) {
static char y;
y = 0x20;
…

}

Compiler chooses what address to use for y, but the variable
is meant to be accessible only in foo(). The variable’s lifetime
is the total duration of the program execution (values persist
across calls to foo()).

EECS 149/249A, UC Berkeley: 56

Statically-Allocated Memory with Limited Scope

char x;
void foo(void) {

x = 0x20;
…

}

What is the difference between x and y when code is loaded
on the device?

void foo(void) {
static char y;
y = 0x20;
…

}

EECS 149/249A, UC Berkeley: 57

Statically-Allocated Memory with Limited Scope

char x;
void foo(void) {

x = 0x20;
…

}

What is the difference between x and y when code is loaded
on the device?

void foo(void) {
static char y;
y = 0x20;
…

}

There is no difference! Accessibility of a variable is a
compile-time concept, not a run-time one.

EECS 149/249A, UC Berkeley: 58

Variables on the Stack
(“automatic variables”)

void foo(void) {
char x;
x = 0x20;
…

}

When the procedure is called, x is assigned an address on the
stack (by decrementing the stack pointer). When the
procedure returns, the memory is freed (by incrementing the
stack pointer). The variable persists only for the duration of
the call to foo().

EECS 149/249A, UC Berkeley: 59

Memory Layout Question 1

char x;
void foo(void) {
x = 0x20;
…

}

How many bytes does x take,
and in which section of the memory layout?

Assume a 32-bit
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

EECS 149/249A, UC Berkeley: 60

Memory Layout Question 1

char x;
void foo(void) {
x = 0x20;
…

}

How many bytes does x take,
and in which section of the memory layout?

Assume a 32-bit
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

1 byte in the data section

EECS 149/249A, UC Berkeley: 61

Memory Layout Question 2

char* x;
void foo(void) {
x = 0x20;
…

}

How many bytes does x take,
and in which section of the memory layout?

Assume a 32-bit
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

4 bytes in the data section

EECS 149/249A, UC Berkeley: 62

Memory Layout Question 3

int a;
void foo(short b) {

static int c = 3;
char* d;
d = (char*) malloc(4);
printf(“Hello EECS149\n”);

}

What about a, b, c, and d?

Assume a 32-bit
ARM microcontroller

Stack

Heap

Data
(Static)

Memory

a – 4 bytes in the data section
b – 2 bytes in the stack
c – 4 bytes in the data section
d – 4 bytes in the stack
contents of d – 4 bytes in the heap

EECS 149/249A, UC Berkeley: 63

Find the flaw in this program
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

EECS 149/249A, UC Berkeley: 64

Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10,
and z go on the stack (and
possibly more, depending on the
compiler).

The procedure foo() returns a pointer to a variable
on the stack. What if another procedure call (or
interrupt) occurs before the returned pointer is
de-referenced?

EECS 149/249A, UC Berkeley: 65

The embedded systems perspective

EECS 149/249A, UC Berkeley: 66

The embedded systems perspective

The Heap is EVIL!!!!

Why?

EECS 149/249A, UC Berkeley: 67

Dynamically-Allocated Memory
The Heap

An operating system typically offers a way to dynamically
allocate memory on a �heap�.

Memory management (malloc() and free()) can lead to many
problems with embedded systems:

¢ Memory leaks (allocated memory is never freed)

¢ Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (�garbage collection�) often require
stopping everything and reorganizing the allocated memory.
This is deadly for real-time programs.

EECS 149/249A, UC Berkeley: 68

The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?
Stack

Data
(Static)

EECS 149/249A, UC Berkeley: 69

The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?

Nothing stops it!
Hopefully the failure is easy to understand…

Stack

Data
(Static)

EECS 149/249A, UC Berkeley: 70

Conclusion

Understanding memory architectures is essential to
programming embedded systems.

