
Introduction to

Embedded Systems

Chapter 9: Memory Architectures

Branden Ghena
UC Berkeley

EECS 149/249A

Fall 2019

Content by Prabal Dutta, Edward Lee, and others

© 2008-2017: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.

All rights reserved.

EECS 149/249A, UC Berkeley: 2

Introducing Branden

2

 Education: 7th year PhD student 😱

 Undergrad: Michigan Tech

 Master’s: University of Michigan

 Teaching:

 Summer 2019: CS61C

 Fall 2018: EE149/CS249A

 On the job market for lecturer positions this fall!

• Research: Low-power wireless communications

EECS 149/249A, UC Berkeley: 3

Today’s Topic: Memory Architectures

Computer Memory

• Physical Types

• SRAM, Flash, Disks

• Hardware Architectures

• Registers, Caches, Primary Memory

• Software

• Stack, Heap, Code

Mostly Review (for some of you)

• With embedded systems twists

• For more details on normal non-embedded computers see CS61C

• https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures

• Particularly “C Memory Management” and “Caches”

https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures

EECS 149/249A, UC Berkeley: 4

Outline

 Memory Overview

 Types of Memory

 Memory Hierarchy

 Embedded Systems Memory

 Memory Maps

 Memory-Mapped I/O

 Lab Hardware Examples

 Memory Organization

 Stacks & Heaps

 Code examples

EECS 149/249A, UC Berkeley: 5

TYPES OF MEMORY

EECS 149/249A, UC Berkeley: 6

Memory Classes

Two major types

1. Memory which is temporary
Volatile Memory

2. Memory which is permanent
Non-Volatile Memory

EECS 149/249A, UC Berkeley: 7

Volatile Memory

Loses contents when power is off.

• How much memory do you think this stores?

EECS 149/249A, UC Berkeley: 8

Volatile Memory

Loses contents when power is off.

• Mercury Delay Line (UNIVAC)

• Roughly 2000 bytes for the entire tank

EECS 149/249A, UC Berkeley: 9

Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory

• Fast, deterministic access time

• Used for registers, caches, and small embedded memories

• But more power hungry and less dense than DRAM

One bit of

SRAM

EECS 149/249A, UC Berkeley: 10

Volatile Memory
Loses contents when power is off.

• DRAM: dynamic random-access memory

• Slower than SRAM

• Access time depends on the sequence

of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh

(typically every 64 milliseconds)

• Typically used for main memory

One bit of

DRAM

EECS 149/249A, UC Berkeley: 11

Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory

• Invented by Dov Frohman of Intel in 1971

• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory

• Invented by George Perlegos at Intel in 1978

Image from the Wikimedia Commons

EECS 149/249A, UC Berkeley: 12

Non-Volatile Memory
Preserves contents when power is off

• Disk drives

• Not as well suited for embedded systems

• Flash memory

• Invented by Dr. Fujio Masuoka at Toshiba around 1980

• Erased a “block” at a time

• Limited number of program/erase cycles (~100,000)

• Controllers can get quite complex

EECS 149/249A, UC Berkeley: 13

Example:

Die of a

STM32F103VGT6

ARM Cortex-M3

microcontroller with

1 megabyte flash

memory by

STMicroelectronics.

Which part is the

memory?

Image from Wikimedia Commons

EECS 149/249A, UC Berkeley: 14

Example:

Die of a

STM32F103VGT6

ARM Cortex-M3

microcontroller with

1 megabyte flash

memory by

STMicroelectronics.

Which part is the

memory?

Image from Wikimedia Commons

Just about everything but

the bottom right corner

EECS 149/249A, UC Berkeley: 15

MEMORY HIERARCHIES

EECS 149/249A, UC Berkeley: 16

Memory Hierarchy

 Memories on a system can be arranged as a pyramid

 Top is the most frequently used memory

 Bottom is the least frequently used

 Let’s draw the hierarchy pyramid

 What are the capabilities and constraints as you move up
and down the hierarchy? Which are volatile/non-volatile?

EECS 149/249A, UC Berkeley: 17

Registers

Cache

Primary Storage

Secondary Storage

Tertiary Storage

Standard

Model
Faster

Less Storage

EECS 149/249A, UC Berkeley: 18

Personal Computer Memory Hierarchy

Primary
Memory

Registers

Hard Disk Drives

EECS 149/249A, UC Berkeley: 19

Accessing Memories

How do you access:

• Registers

• Directly in assembly code

• Cache

• Automatically handled by hardware

• RAM

• Load/Store instructions in assembly code

• This is the main memory for the system

• Disk

• The OS handles copying pages into RAM

EECS 149/249A, UC Berkeley: 20

Outline

 Memory Overview

 Types of Memory

 Memory Hierarchy

 Embedded Systems Memory

 Memory Maps

 Memory-Mapped I/O

 Lab Hardware Examples

 Memory Organization

 Stacks & Heaps

 Code examples

EECS 149/249A, UC Berkeley: 21

MEMORY MAPS

EECS 149/249A, UC Berkeley: 22

Registers

Cache

SRAM

Flash

Microcontrollers

EECS 149/249A, UC Berkeley: 23

Caches in Embedded Systems

Why do embedded systems avoid using caches?

EECS 149/249A, UC Berkeley: 24

Caches in Embedded Systems

Why do embedded systems avoid using caches?

Caches improve performance, but making timing

unreliable (could be faster or slower in any given case)

EECS 149/249A, UC Berkeley: 25

EECS 149/249A, UC Berkeley: 26

Accessing Embedded Memories

How do you access:

• Registers

• Directly in assembly code

• SRAM (Volatile)

• Load/Store instructions in assembly code

• Variables are stored in here

• Flash (Non-Volatile)

• Load instructions in assembly code (Read-Only)

• Code executes from here

Note: no virtual memory!!

EECS 149/249A, UC Berkeley: 27

Memory Map

of an ARM

Cortex - M3

architecture

Defines the

mapping of

addresses to

physical memory.

Why do this?

Note that this does

not define how

much physical

memory there is!

EECS 149/249A, UC Berkeley: 28

Main Memory on Personal Computers

 Applications on personal computers don’t see a
memory map like the Cortex-M3 one

 Why not?

 What does their memory look like?

EECS 149/249A, UC Berkeley: 29

Main Memory on Personal Computers

 Applications on personal computers don’t see a
memory map like the Cortex-M3 one

 Why not?

 What does their memory look like?

 How this is implemented quickly and securely are
major topics of Operating Systems and Computer
Architecture

Applications are provided virtual memory spaces, where it

appears as if they own all addresses and start at address 0.

This makes them easier to create and more secure.

EECS 149/249A, UC Berkeley: 30

MEMORY-MAPPED I/O

EECS 149/249A, UC Berkeley: 31

Things That Aren’t Memory

 Microcontrollers have a lot of peripherals

 General Purpose I/O (GPIO) pins

 Analog to Digital Converters

 Digital to Analog Converters

 Pulse-Width Modulation Generators

 Timers

 Various communication buses: UART, SPI, I2C

 How do they access the peripherals?

 Why not create special assembly functions to access them?

EECS 149/249A, UC Berkeley: 32

Things That Aren’t Memory

 Microcontrollers have a lot of peripherals

 General Purpose I/O (GPIO) pins

 Analog to Digital Converters

 Digital to Analog Converters

 Pulse-Width Modulation Generators

 Timers

 Various communication buses: UART, SPI, I2C

 How do they access the peripherals?

 Why not create special assembly functions to access them?

With memory reads and writes

That would make the processor harder to design. In the memory-

mapped case, one processor can use an arbitrary selection of

peripherals and doesn’t have to know anything about them.

EECS 149/249A, UC Berkeley: 33

Example: Random Number Generator

Example RNG peripheral from the nRF52832

Interface:

EECS 149/249A, UC Berkeley: 34

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 35

Example: Random Number Generator

How do we access these

registers from C code?

EECS 149/249A, UC Berkeley: 36

Example: Random Number Generator

How do we access these

registers from C code?
By reading and writing the raw address.

(Although we usually create structures at

that address to make things more clear)

EECS 149/249A, UC Berkeley: 37

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 38

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 39

Example: Random Number Generator

EECS 149/249A, UC Berkeley: 40

Example: Random Number Generator

Remember: at the very bottom these are still just

memory reads and writes!

uint32_t value = NRF_RNG->Value;

Is equivalent to

uint32_t value = *(uint32_t*)(0x4000D508);

EECS 149/249A, UC Berkeley: 41

LED Blinking Code Example

void main(void) {

const unsigned int LED_NUM = 1;

// Sets the LED pin to be an output

((volatile unsigned int)(0x400DC400)) |= (1 << LED_NUM);

while(1) {

volatile int i;

// LED on

((volatile unsigned int)(0x400DC000 + ((1 << LED_NUM) << 2))) = 0x00;

for (i=0; i<400000; i++);

// LED off

((volatile unsigned int)((0x400DC000) + ((1 << LED_NUM) << 2))) = 0xFF;

for (i=0; i<400000; i++);

}

}

Memory Mapped I/O Address!

Compiler: don’t
optimize me!!!

Delay for a while

EECS 149/249A, UC Berkeley: 42

LAB HARDWARE

EECS 149/249A, UC Berkeley: 43

nRF52832 Microcontroller

Processor

• ARM Cortex-M4F

• 3-stage pipeline!

• Floating point support

Memory

• Instruction Cache

• Off by default

• 64 kB SRAM

• 512 kB Flash

EECS 149/249A, UC Berkeley: 44

Memory Map

EECS 149/249A, UC Berkeley: 45

nRF52832 Block Diagram

To Peripherals

EECS 149/249A, UC Berkeley: 46

nRF52832 Block Diagram

To Peripherals

Why have 8 separate

RAM banks?

EECS 149/249A, UC Berkeley: 47

nRF52832 Block Diagram

To Peripherals

Why have 8 separate

RAM banks?

So that extraneous RAM

can be turned off to save

power.

EECS 149/249A, UC Berkeley: 48

nRF52832 Block Diagram

To Peripherals

Why is GPIO special?

EECS 149/249A, UC Berkeley: 49

nRF52832 Block Diagram

To Peripherals

Why is GPIO special?

Because we want to be able to

respond to simple external events

very quickly.

EECS 149/249A, UC Berkeley: 50

Announcements Placeholder

EECS 149/249A, UC Berkeley: 51

Outline

 Memory Overview

 Types of Memory

 Memory Hierarchy

 Embedded Systems Memory

 Memory Maps

 Memory-Mapped I/O

 Lab Hardware Examples

 Memory Organization

 Stacks & Heaps

 Code examples

EECS 149/249A, UC Berkeley: 52

MEMORY LAYOUT

EECS 149/249A, UC Berkeley: 53

C Memory Layout

• Program’s address space
contains 4 regions:
– Stack: local variables, grows

downward

– Heap: space requested via
malloc() and used with pointers;
resizes dynamically, grows upward

– Static Data: global and static
variables, does not grow or shrink

– Code: loaded when program
starts, does not change

53

code

static data

heap

stack
~ FFFF

FFFFhex

~ 0hex

EECS 149/249A, UC Berkeley: 54

Where Do the Variables Go?

• Declared outside a function:

Static Data

• Declared inside a function:

Stack
– main() is a function

– Freed when function returns

• Dynamically allocated:

Heap
– i.e. malloc

54

#include <stdio.h>

int varGlobal;

int main() {

int varLocal;

int *varDyn =

malloc(sizeof(int));

}

EECS 149/249A, UC Berkeley: 55

Statically-Allocated Memory in C

char x;

void foo(void) {

x = 0x20;

…

}

Compiler chooses what address to use for x, and the variable

is accessible across procedures. The variable’s lifetime is the

total duration of the program execution.

EECS 149/249A, UC Berkeley: 56

Statically-Allocated Memory with Limited Scope

void foo(void) {

static char y;

y = 0x20;

…

}

Compiler chooses what address to use for y, but the variable

is meant to be accessible only in foo(). The variable’s lifetime

is the total duration of the program execution (values persist

across calls to foo()).

EECS 149/249A, UC Berkeley: 57

Statically-Allocated Memory with Limited Scope

char x;

void foo(void) {

x = 0x20;

…

}

What is the difference between x and y when code is loaded

on the device?

void foo(void) {

static char y;

y = 0x20;

…

}

EECS 149/249A, UC Berkeley: 58

Statically-Allocated Memory with Limited Scope

char x;

void foo(void) {

x = 0x20;

…

}

What is the difference between x and y when code is loaded

on the device?

void foo(void) {

static char y;

y = 0x20;

…

}

There is no difference! Accessibility of a variable

is a compile-time concept, not a run-time one.

EECS 149/249A, UC Berkeley: 59

Variables on the Stack

(“automatic variables”)

void foo(void) {

char x;

x = 0x20;

…

}

When the procedure is called, x is assigned an address on the

stack (by decrementing the stack pointer). When the

procedure returns, the memory is freed (by incrementing the

stack pointer). The variable persists only for the duration of

the call to foo().

EECS 149/249A, UC Berkeley: 60

Memory Layout Question 1

char x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

EECS 149/249A, UC Berkeley: 61

Memory Layout Question 1

char x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

1 byte in the data section

EECS 149/249A, UC Berkeley: 62

Memory Layout Question 2

char* x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

EECS 149/249A, UC Berkeley: 63

Memory Layout Question 2

char* x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

4 bytes in the data section (for 32-bit processors)

EECS 149/249A, UC Berkeley: 64

Memory Layout Question 3

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello EECS149\n”);

}

What about a, b, c, and d?

Assume a 32-bit

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

EECS 149/249A, UC Berkeley: 65

Memory Layout Question 3

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello EECS149\n”);

}

What about a, b, c, and d?

Assume a 32-bit

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

a – 4 bytes in the data section

b – 2 bytes in the stack

c – 4 bytes in the data section

d – 4 bytes in the stack

contents of d – 4 bytes in the heap

EECS 149/249A, UC Berkeley: 66

Find the flaw in this program
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {

int z;

z = y * x;

return &z;

}

int main(void) {

int* result = foo(10);

...

}

EECS 149/249A, UC Berkeley: 67

Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {

int z;

z = y * x;

return &z;

}

int main(void) {

int* result = foo(10);

...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10,

and z go on the stack (and

possibly more, depending on the

compiler).

The procedure foo() returns a pointer to a variable

on the stack. What if another procedure call (or

interrupt) occurs before the returned pointer is

de-referenced?

EECS 149/249A, UC Berkeley: 68

The embedded systems perspective

EECS 149/249A, UC Berkeley: 69

The embedded systems perspective

The Heap is EVIL!!!!

Why?

EECS 149/249A, UC Berkeley: 70

Dynamically-Allocated Memory

The Heap

An operating system typically offers a way to dynamically

allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many

problems with embedded systems:

 Memory leaks (allocated memory is never freed)

 Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) often require

stopping everything and reorganizing the allocated memory.

This is deadly for real-time programs.

EECS 149/249A, UC Berkeley: 71

The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?
Stack

Data

(Static)

EECS 149/249A, UC Berkeley: 72

The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?

Nothing stops it!

Hopefully the failure is easy to understand…

Stack

Data

(Static)

EECS 149/249A, UC Berkeley: 73

Conclusion

Memories (non-volatile and volatile) are essential to

computers

Embedded systems use a simplified memory architecture

with only registers, SRAM, and Flash (no caches)

Memory-Mapped I/O allows interactions with embedded

peripherals to look like normal memory accesses

Software creates Stack, Heap, Static, and Code sections

in memory

EECS 149/249A, UC Berkeley: 74

BONUS SLIDES ON CACHES

See CS61C Lectures on Caches for more information

https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures

https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures

EECS 149/249A, UC Berkeley: 75

Caches

 How do we read or write to a cache?

EECS 149/249A, UC Berkeley: 76

Caches

 How do we read or write to a cache?
 You don’t! Caches are automatic.

CPU

registers
Cache

SRAM DRAM

Main memory

Personal Computer

Example

EECS 149/249A, UC Berkeley: 77

Direct-Mapped

Cache
Valid Tag Block

Valid Tag Block

Valid Tag Block

.
.
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then

we have a “cache hit.”

Otherwise, the fetch goes to

main memory, updating the line.

EECS 149/249A, UC Berkeley: 78

Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

.
.
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of

several “lines”

Tag matching is done using an

“associative memory” or

“content-addressable memory.”

EECS 149/249A, UC Berkeley: 79

Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

.
.
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of

several “lines”

A “cache miss” requires a

replacement policy (like

LRU or FIFO).

What are the drawbacks of a

set-associative cache?

EECS 149/249A, UC Berkeley: 80

Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

.
.
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of

several “lines”

A “cache miss” requires a

replacement policy (like

LRU or FIFO).

What are the drawbacks of a

set-associative cache?
You have to search

through each tag to

check for your data

