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Introducing Branden

2

 Education: 7th year PhD student  😱

 Undergrad: Michigan Tech

 Master’s: University of Michigan

 Teaching:

 Summer 2019: CS61C

 Fall 2018: EE149/CS249A

 On the job market for lecturer positions this fall!

• Research: Low-power wireless communications
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Today’s Topic: Memory Architectures

Computer Memory

• Physical Types

• SRAM, Flash, Disks

• Hardware Architectures

• Registers, Caches, Primary Memory

• Software

• Stack, Heap, Code

Mostly Review (for some of you)

• With embedded systems twists

• For more details on normal non-embedded computers see CS61C

• https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures

• Particularly “C Memory Management” and “Caches”

https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures
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TYPES OF MEMORY
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Memory Classes

Two major types

1. Memory which is temporary
Volatile Memory

2. Memory which is permanent
Non-Volatile Memory
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Volatile Memory

Loses contents when power is off.

• How much memory do you think this stores?
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Volatile Memory

Loses contents when power is off.

• Mercury Delay Line (UNIVAC)

• Roughly 2000 bytes for the entire tank
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Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory

• Fast, deterministic access time

• Used for registers, caches, and small embedded memories

• But more power hungry and less dense than DRAM

One bit of 

SRAM
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Volatile Memory
Loses contents when power is off.

• DRAM: dynamic random-access memory

• Slower than SRAM

• Access time depends on the sequence

of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh

(typically every 64 milliseconds)

• Typically used for main memory

One bit of 

DRAM
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Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory

• Invented by Dov Frohman of Intel in 1971

• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory

• Invented by George Perlegos at Intel in 1978

Image from the Wikimedia Commons
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Non-Volatile Memory
Preserves contents when power is off

• Disk drives

• Not as well suited for embedded systems

• Flash memory

• Invented by Dr. Fujio Masuoka at Toshiba around 1980

• Erased a “block” at a time

• Limited number of program/erase cycles (~100,000)

• Controllers can get quite complex
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Example: 

Die of a 

STM32F103VGT6 

ARM Cortex-M3 

microcontroller with 

1 megabyte flash 

memory by 

STMicroelectronics.

Which part is the 

memory?

Image from Wikimedia Commons
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Example: 

Die of a 

STM32F103VGT6 

ARM Cortex-M3 

microcontroller with 

1 megabyte flash 

memory by 

STMicroelectronics.

Which part is the 

memory?

Image from Wikimedia Commons

Just about everything but 

the bottom right corner
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MEMORY HIERARCHIES
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Memory Hierarchy

 Memories on a system can be arranged as a pyramid

 Top is the most frequently used memory

 Bottom is the least frequently used

 Let’s draw the hierarchy pyramid

 What are the capabilities and constraints as you move up 
and down the hierarchy? Which are volatile/non-volatile?
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Registers

Cache

Primary Storage

Secondary Storage

Tertiary Storage

Standard

Model
Faster

Less Storage
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Personal Computer Memory Hierarchy

Primary
Memory

Registers

Hard Disk Drives
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Accessing Memories

How do you access:

• Registers

• Directly in assembly code

• Cache

• Automatically handled by hardware

• RAM

• Load/Store instructions in assembly code

• This is the main memory for the system

• Disk

• The OS handles copying pages into RAM
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MEMORY MAPS
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Registers

Cache

SRAM

Flash

Microcontrollers
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Caches in Embedded Systems

Why do embedded systems avoid using caches?
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Caches in Embedded Systems

Why do embedded systems avoid using caches?

Caches improve performance, but making timing 

unreliable (could be faster or slower in any given case)
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Accessing Embedded Memories

How do you access:

• Registers

• Directly in assembly code

• SRAM (Volatile)

• Load/Store instructions in assembly code

• Variables are stored in here

• Flash (Non-Volatile)

• Load instructions in assembly code (Read-Only)

• Code executes from here

Note: no virtual memory!!
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Memory Map 

of an ARM 

Cortex - M3 

architecture

Defines the 

mapping of 

addresses to 

physical memory.

Why do this?

Note that this does 

not define how 

much physical 

memory there is!
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Main Memory on Personal Computers

 Applications on personal computers don’t see a 
memory map like the Cortex-M3 one

 Why not?

 What does their memory look like?
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Main Memory on Personal Computers

 Applications on personal computers don’t see a 
memory map like the Cortex-M3 one

 Why not?

 What does their memory look like?

 How this is implemented quickly and securely are 
major topics of Operating Systems and Computer 
Architecture

Applications are provided virtual memory spaces, where it 

appears as if they own all addresses and start at address 0.

This makes them easier to create and more secure.



EECS 149/249A, UC Berkeley: 30

MEMORY-MAPPED I/O
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Things That Aren’t Memory

 Microcontrollers have a lot of peripherals

 General Purpose I/O (GPIO) pins

 Analog to Digital Converters

 Digital to Analog Converters

 Pulse-Width Modulation Generators

 Timers

 Various communication buses: UART, SPI, I2C

 How do they access the peripherals?

 Why not create special assembly functions to access them?



EECS 149/249A, UC Berkeley: 32

Things That Aren’t Memory

 Microcontrollers have a lot of peripherals

 General Purpose I/O (GPIO) pins

 Analog to Digital Converters

 Digital to Analog Converters

 Pulse-Width Modulation Generators

 Timers

 Various communication buses: UART, SPI, I2C

 How do they access the peripherals?

 Why not create special assembly functions to access them?

With memory reads and writes

That would make the processor harder to design. In the memory-

mapped case, one processor can use an arbitrary selection of 

peripherals and doesn’t have to know anything about them.
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Example: Random Number Generator

Example RNG peripheral from the nRF52832

Interface:
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Example: Random Number Generator
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Example: Random Number Generator

How do we access these 

registers from C code?
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Example: Random Number Generator

How do we access these 

registers from C code?
By reading and writing the raw address. 

(Although we usually create structures at 

that address to make things more clear)
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Example: Random Number Generator
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Example: Random Number Generator
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Example: Random Number Generator
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Example: Random Number Generator

Remember: at the very bottom these are still just 

memory reads and writes!

uint32_t value = NRF_RNG->Value;

Is equivalent to

uint32_t value = *(uint32_t*)(0x4000D508);
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LED Blinking Code Example

void main(void) {

const unsigned int LED_NUM  = 1;

// Sets the LED pin to be an output

*((volatile unsigned int*)(0x400DC400)) |= (1 << LED_NUM);

while(1) {

volatile int i;

// LED on

*((volatile unsigned int*)(0x400DC000 + ((1 << LED_NUM) << 2))) = 0x00;

for (i=0; i<400000; i++);

// LED off

*((volatile unsigned int*)((0x400DC000) + ((1 << LED_NUM) << 2))) = 0xFF;

for (i=0; i<400000; i++);

}

}

Memory Mapped I/O Address!

Compiler: don’t 
optimize me!!!

Delay for a while
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LAB HARDWARE
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nRF52832 Microcontroller

Processor

• ARM Cortex-M4F

• 3-stage pipeline!

• Floating point support

Memory

• Instruction Cache

• Off by default

• 64 kB SRAM

• 512 kB Flash
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Memory Map
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nRF52832 Block Diagram

To Peripherals



EECS 149/249A, UC Berkeley: 46

nRF52832 Block Diagram

To Peripherals

Why have 8 separate 

RAM banks?
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nRF52832 Block Diagram

To Peripherals

Why have 8 separate 

RAM banks?

So that extraneous RAM 

can be turned off to save 

power.
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nRF52832 Block Diagram

To Peripherals

Why is GPIO special?
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nRF52832 Block Diagram

To Peripherals

Why is GPIO special?

Because we want to be able to 

respond to simple external events 

very quickly.
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Announcements Placeholder
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MEMORY LAYOUT
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C Memory Layout

• Program’s address space
contains 4 regions:
– Stack:  local variables, grows 

downward

– Heap:  space requested via  
malloc() and used with pointers;  
resizes dynamically, grows upward

– Static Data:  global and static 
variables, does not grow or shrink

– Code:  loaded when program 
starts, does not change

53

code

static data

heap

stack
~ FFFF 

FFFFhex

~ 0hex
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Where Do the Variables Go?

• Declared outside a function:

Static Data

• Declared inside a function:

Stack
– main() is a function

– Freed when function returns

• Dynamically allocated:

Heap
– i.e. malloc

54

#include <stdio.h>

int varGlobal;

int main() {

int varLocal;

int *varDyn = 

malloc(sizeof(int));

}



EECS 149/249A, UC Berkeley: 55

Statically-Allocated Memory in C

char x;

void foo(void) {

x = 0x20;

…

}

Compiler chooses what address to use for x, and the variable 

is accessible across procedures. The variable’s lifetime is the 

total duration of the program execution.
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Statically-Allocated Memory with Limited Scope

void foo(void) {

static char y;

y = 0x20;

…

}

Compiler chooses what address to use for y, but the variable 

is meant to be accessible only in foo(). The variable’s lifetime 

is the total duration of the program execution (values persist 

across calls to foo()).
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Statically-Allocated Memory with Limited Scope

char x;

void foo(void) {

x = 0x20;

…

}

What is the difference between x and y when code is loaded 

on the device?

void foo(void) {

static char y;

y = 0x20;

…

}



EECS 149/249A, UC Berkeley: 58

Statically-Allocated Memory with Limited Scope

char x;

void foo(void) {

x = 0x20;

…

}

What is the difference between x and y when code is loaded 

on the device?

void foo(void) {

static char y;

y = 0x20;

…

}

There is no difference! Accessibility of a variable 

is a compile-time concept, not a run-time one.
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Variables on the Stack

(“automatic variables”)

void foo(void) {

char x;

x = 0x20;

…

}

When the procedure is called, x is assigned an address on the 

stack (by decrementing the stack pointer). When the 

procedure returns, the memory is freed (by incrementing the 

stack pointer). The variable persists only for the duration of 

the call to foo().
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Memory Layout Question 1

char x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit 

ARM microcontroller

Stack

Heap

Data

(Static)

Memory
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Memory Layout Question 1

char x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit 

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

1 byte in the data section
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Memory Layout Question 2

char* x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit 

ARM microcontroller

Stack

Heap

Data

(Static)

Memory
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Memory Layout Question 2

char* x;

void foo(void) {

x = 0x20;

…

}

How many bytes does x take,

and in which section of the memory layout?

Assume a 32-bit 

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

4 bytes in the data section (for 32-bit processors)
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Memory Layout Question 3

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello EECS149\n”);

}

What about a, b, c, and d?

Assume a 32-bit 

ARM microcontroller

Stack

Heap

Data

(Static)

Memory
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Memory Layout Question 3

int a;

void foo(short b) {

static int c = 3;

char* d;

d = (char*) malloc(4);

printf(“Hello EECS149\n”);

}

What about a, b, c, and d?

Assume a 32-bit 

ARM microcontroller

Stack

Heap

Data

(Static)

Memory

a – 4 bytes in the data section

b – 2 bytes in the stack

c – 4 bytes in the data section

d – 4 bytes in the stack

contents of d – 4 bytes in the heap
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Find the flaw in this program 
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {

int z;

z = y * x;

return &z;

}

int main(void) {

int* result = foo(10);

...

}
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Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {

int z;

z = y * x;

return &z;

}

int main(void) {

int* result = foo(10);

...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10, 

and z go on the stack (and 

possibly more, depending on the 

compiler).

The procedure foo() returns a pointer to a variable 

on the stack. What if another procedure call (or 

interrupt) occurs before the returned pointer is 

de-referenced?
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The embedded systems perspective



EECS 149/249A, UC Berkeley: 69

The embedded systems perspective

The Heap is EVIL!!!!

Why?
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Dynamically-Allocated Memory 

The Heap

An operating system typically offers a way to dynamically 

allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many 

problems with embedded systems:

 Memory leaks (allocated memory is never freed)

 Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) often require 

stopping everything and reorganizing the allocated memory. 

This is deadly for real-time programs.
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The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?
Stack

Data

(Static)
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The embedded systems perspective

How do we handle memory faults?

What if the stack grows too much?

Nothing stops it!

Hopefully the failure is easy to understand…

Stack

Data

(Static)
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Conclusion

Memories (non-volatile and volatile) are essential to 

computers

Embedded systems use a simplified memory architecture 

with only registers, SRAM, and Flash (no caches)

Memory-Mapped I/O allows interactions with embedded 

peripherals to look like normal memory accesses

Software creates Stack, Heap, Static, and Code sections 

in memory
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BONUS SLIDES ON CACHES

See CS61C Lectures on Caches for more information

https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures

https://inst.eecs.berkeley.edu/~cs61c/su19/#lectures
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Caches

 How do we read or write to a cache?
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Caches

 How do we read or write to a cache?
 You don’t! Caches are automatic.

CPU

registers
Cache

SRAM DRAM

Main memory

Personal Computer

Example
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Direct-Mapped

Cache
Valid Tag Block

Valid Tag Block

Valid Tag Block

. 
. 
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address

matches the tag of the line, then 

we have a “cache hit.” 

Otherwise, the fetch goes to 

main memory, updating the line.
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Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. 
. 
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 

several “lines”

Tag matching is done using an 

“associative memory” or 

“content-addressable memory.”
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Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. 
. 
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 

several “lines”

A “cache miss” requires a 

replacement policy (like 

LRU or FIFO).

What are the drawbacks of a

set-associative cache?
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Set-Associative

Cache
Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. 
. 
.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 

several “lines”

A “cache miss” requires a 

replacement policy (like 

LRU or FIFO).

What are the drawbacks of a

set-associative cache?
You have to search 

through each tag to 

check for your data


